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Preface

General part

I started to write this book in 1994 when I took over the teaching of the antenna course
at Chalmers University of Technology (Chalmers). That is 20 years ago now, and a lot of
developments have happened with the antenna technology during these years, as a result of
the digital revolution and the growth of the mobile wireless communications. My research
group has been a major front line player in this development, and my textbook has gradually
evolved together with the technological development. My intention is that it shall continue
to evolve in the years to come. There are more opportunities in the wireless revolution that
requires rethinking and reordering, and not the least cleaning up the terminology. This book
is the start of such a process.

The antenna engineer of today must know the basic antenna theories and principles in order
to find good and innovative initial antenna geometries, he or she must know the electromag-
netic (EM) simulation tools in order to verify the initial design, and he or she must know how
to optimize the antenna on system level in order to provide the best overall antenna solution.
The latter requires also some knowledge of propagation, signal processing, and communica-
tion and radar systems. Therefore, my textbook puts a lot of attention to the characterization
on system level. This has been done by introducing a reference environment for multipath,
referred to as Rich Isotropic MultiPath (RIMP) (Chapter 3). RIMP is a logical compliment
to the normal “free space” or anechoic reference environment (Chapter 2), which in prop-
agation terminology could be called a pure Line-Of-Sight (LOS environment. There is one
chapter associated with each of these reference environments. Chapter 3 naturally handles
MIMO arrays, i.e., the multi-port antenna arrays used in the digital mobile communications
systems. Such arrays link to the classical array antennas in Chapter 10 via the embedded
element far-field function, and the embedded element efficiency. The latter represents a fun-
damental limitation on gains of dense arrays and explains the classical element-gain paradox
in classical arrays (Chapter 11).

When introducing new and modern material in a textbook, some traditional parts need to be
removed or compacted. I did this very early during the 20 years writing period, by building
up a new EM foundation for antenna theory based on radiation from incremental current
sources (Chapter 4). Note the term incremental. This send the right signals to the reader:
All radiation problems can be reduced to an integral or summation over the incremental
sources. To make this complete I decided to introduce the Huygens source, which is a
specific linear combination of an electric and magnetic current. The Huygens source plays a
major role in determining the fundamental limitations of the directivity on small antennas
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(Chapter 11).

The terms that characterize this textbook the best are rethinking and reordering. Several new
terms have been defined, and they have during the years gradually been accepted. The most
important being the fact that wireless devices with multiport antennas can be characterized in
chambers with reflecting metal walls (reverberation chambers). The reverberation chambers
emulate RIMP. This is a complete contrast to traditional anechoic “free-space like” chambers,
so it took 10-14 years before this was generally accepted, after it was introduced in year 2000.
This introduction has together with the definition of a digital threshold receiver (Chapter3)
opened up a complete new world of opportunities. By the latter definition the rethinking
can continue.

The intermediate chapters between Chapters 4 and 11 contain the theory of the most com-
mon antenna types. These chapters are supported by a Matlab handbook, which contains
the programs that have been used to produce all the design curves. Therefore, the students
can use them during their work with the exercises, and later in professional work situations
to make initial antenna designs. The theories in these chapters contain in principle classi-
cal design formulas, but the derivations have been modernized. This was done quite early
by starting from the incremental currents (introduced in Chapter 4), and using the mod-
ern Method of Moments (MoM) introduced in Chapter 4 as a general concept for deriving
traditional impedance formulas. This can be achieved by using one physical basis function.
The MoM is generally often referred to as Galerkin’s method. I have myself a background
in MoM via R.F. Harrington’s book, and I have also several papers myself related to MoM

combined with spectral domain approaches (Chapter 6). I find the MoM theory very good
for understanding radiation phenomena. The whole Chapter 4 is built up using MoM as a
way of thinking.

I have at the end of this preface, proposed a list of learning goals for students using this
textbook.

Previous book versions

The book was published first time in 2000 by a publisher in Sweden, who has no more rights
to the material. The present version is updated and the major Chapters 3 and 11 have
been added. This update started in 2009, and the manuscript has since then been used as a
compendium in my Antenna Engineering course at Chalmers.

About the citations

The reader will from the previous versions of it understand that the textbook is very special,
because it contains a lot of rethinking. As a result, there are many self-citations, with the
purpose of having scientific documentation of all the rethinking. This is of course sensitive.
Therefore, I have asked my friend Professor Stefano Maci to add references to alternative
well proven and accepted approaches, at the end of almost all chapters under the title Com-
plementary Comments. He is a Director of the European School of Antennas and as such he
is very well aware of most approaches used in antenna theory and design, so he is the right
person to do this. I hope that this way of giving credit to others’ approaches will make my
book more acceptable.
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there is another art which is even more important, and without which we cannot create
new knowledge: imagination. Imagination is defined in Webster’s dictionary as “the act or
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power of creating mental images of what has never been actually experienced, or of creating
new images or ideas by combining previous experiences”. My emphasis when writing the
book has been to make compact vector formulations of the theory and to illustrate the
interpretation of the theory. Hopefully, this will enhance the reader’s imagination. I make
frequent use of equivalent sources, making it easier to generate mental images of complicated
equations.

Modern antenna designs are more and more often based on computer-aided design (CAD).
This involves running computer programs that have been bought from a commercial software
vendor or acquired with or without cost from specialists in the field. Therefore, the antenna
designer of today needs an overall knowledge and understanding of the characteristics and
limitations of the different analysis methods. In addition, some analytical skill is needed
in order to make fast initial designs and to develop simple solutions for special cases for
verification of the computations. Also, there may often be a need to combine different
analysis methods and software. In such cases, the designer needs enough analytical and
theoretical background to do the combination correctly. In order to satisfy these needs
I have tried to make the mathematical formulations as compact and simple as possible.
This has been done by consequently using the vector notation, as vectors are very easily
programmed nowadays. In addition, the mathematical notation is considerably simplified by
making use of equivalent currents. The equivalence theorem makes it easier to structure a
complicated antenna problem into more manageable smaller subproblems. The radiation field
can always be found by integration over a given distribution of impressed and induced currents
located in free space. These currents may be physical or equivalent. The radiation integrals
can be solved analytically only for special cases. I have chosen to include such analytical
solutions only if they are so simple that they can improve the physical interpretation, or
if they drastically decrease computation time. Otherwise, I think numerical solutions are
preferable.

The main reason for the compact vector notation is that it is independent of the choice
of coordinate system, and thereby it is easier to interpret the expressions. And, physical
interpretations are important for improving the imagination and for building up intuition.
Both imagination and intuition play an important role in research and development because
they make it simpler to foresee working solutions. They improve creativity.

Maxwell’s field equations based on the electric and magnetic vector potentials contain the
parameters permittivity, permeability and angular frequency (ε, µ and ω), which we rarely
use in practice. The relative values εr and µr have much more convenient values than ε
and µ. In addition, ε0, µ0 and ω can always be replaced by the wave number and wave
impedance (k and η). Therefore, my book consequently uses k and η instead of ε0, µ0 and
ω in all equations. Actually, I am of the opinion that the commonly used vector potentials
in most cases are inconvenient and unnecessary, and I have therefore chosen to avoid them
by using the direct vector integral formulas for the fields resulting from current sources. This
has contributed significantly to the compactness of the formulations.

It is always difficult to remember where the wave impedance η should appear in the radiation
field formulas. In order to improve this, I have chosen wherever it is natural to begin all for-
mulas for the H-field with 1/η, and to always use η in front of the electric current distribution
J. Thereby, η comes in no other places. With this notation it is very easy to normalize the
H-field and the current in such a way that the wave impedance in free space becomes unity,
if desired.
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The electric and magnetic fields can always be expressed as integrals over impressed and
induced electric and magnetic currents. If these currents are unknown, the integrals can be
used to formulate integral equations by applying the boundary condition for the fields. Such
integral equations are normally solved by the MoM. This book is not about numerical MoM

solutions. Still, I have chosen to present the MoM as a basic principle in field theory, and
give an introduction to it in Chapter 4. The reason is that the classical integral formulas for
the impedances of dipoles, slots and patches can be derived more simply and understandable
by using a MoM approach (with one expansion function) than in classical ways (such as by
“eletromagnetic force”). The MoM approach makes it also easier to understand that the
results can be improved by increasing the number of expansion functions.

I have chosen to begin the book with a chapter on characterization of antennas (Chapter 2),
instead of introducing Maxwell’s equations and the far-field of incremental sources. This
characterization includes definitions of the far-field function, the phase reference point and
the co- and cross-polar polarization vectors. This makes it possible later in Chapter 4, when
Maxwell’s equations and the incremental sources are introduced, to characterize also the
latter in terms of their radiation characteristics. Thereby, the incremental sources will become
easier to use when designing antennas.

The terms far-field function and phase reference point cannot be found in other text books.
They are evident and self-explanatory to experienced people working in the antenna field.
Still, I have often been surprised about how many do not know that a phase pattern has a
reference point, and that this has nothing to do with the phase center. Therefore, I have
chosen to define these important terms clearly in Chapter 2.

Antennas are normally studied in the transmit mode, for which case the equivalent circuit
can be found in many textbooks. Recently, and in particular in relation to signal processing
antennas, it has become common to perform a detailed receive mode analysis. Such analyses
become much more accurate if a complete equivalent circuit of the receiving antenna is used.
Therefore, I have chosen to also present the equivalent circuits for reception, which as far as
I know cannot be found in other textbooks. The induced voltage source is expressed in terms
of the far-field function in the transmit mode as well as the direction and complex amplitude
of the incident wave.

Several antennas are rotationally symmetric. They are more commonly referred to as bodies
of revolution (BOR). These antennas can be analyzed more simply than others by taking
advantage of the symmetry. I have chosen to divide them into two types, BOR0 and BOR1

antennas, where the index denotes the order of variation which the field has in ϕ-direction.
I have added a Section 2.4 with the mathematic descriptions of BOR0 and BOR1 anten-
nas.

Aperture antennas are most conveniently analyzed in terms of Huygens sources located at
the wavefronts of the aperture field. In order to handle this approach in an efficient way, I
have chosen to define a Huygens equivalent and a Huygens approximation, which relate to
Huygens study made in 1690.

When analyzing plane apertures, I introduce the Fourier transform of the aperture field. I
have chosen the sign of the exponent of the integrand in such a way that the spectral domain
fields can be conveniently interpreted as waves propagating in the direction of k = kxx̂+kyŷ+

kz ẑ, where kx and ky are the spectral variables. This definition of the Fourier transform is
not in agreement with the standard definition, but it is easier to physically interpret herein.
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I have in Chapter 5 chosen to interpret the Fourier transforms of planar current distributions
as infinite current sheets. This has the advantage of reducing the complexity of the resulting
field formulas. It is also easier to generalize the formulas to fields in dielectric multilayer
structures (not included in this book).

Microstrip antennas are most accurately analyzed by the MoM and by accounting for the
substrate by the spectral domain approach. I have developed the reaction formula for the
patch impedance. Still, I have chosen to use the simpler two-slot transmission line model to
calculate Mathcad results for patch antennas (Chapter 6)), to make the Matlab program
simpler and faster. I use in fact an improved transmission line model valid for rectangular
patches on thin substrates. This gives an accuracy which is comparable with that of the
MoM for this special case. The derived reaction formula for the patch impedance contains a
probe correction for both line-fed and probe-fed patches.

The book contains a section about Gaussian beams. The Gaussian beam is a very illustrative
way of describing how fields transform from radiating near-fields to far-fields. It is very useful
for fast initial calculations of beamwidths from any aperture antenna at any distance from the
aperture, and the results are in many cases quite accurate. The Gaussian beam is in particular
useful in designing corrugated horn antennas. The Gaussian beam formulas are rarely found
in basic antenna textbooks, as they are too complex for doing calculation by hand without
introducing errors. To improve this, I have separated the formulas into independent parts, all
being physically interpretable, such as for example “diffraction cone radius” and “geometrical
optics cone radius”, and the formulas are programmed in the Matlab handbook, by which
results easily can be achieved. This separation in two parts makes then also the Gaussian
beam a source for understanding the phenomenon of aperture diffraction.

In Chapter 1, I have included a section about terminology where I describe the difference
between rays and phase paths, and where I introduce aperture diffraction as well as edge
diffraction. I have chosen to do this already in the introductory Chapter 1, because most
people have a physical feeling for rays even without having read any theoretical work on
ray techniques, and because the concept of diffraction is so essential in antennas and so
strongly linked to ray interpretation. The concept of aperture diffraction is in particular
important. Without it people may get a completely wrong impression of how antennas work,
from knowing only about ray interpretations.

Chapter 10 on linear and planar arrays presents two way of computing the far-field of an array:
By the element-by element sum (resulting in the classical array factor), and as a grating-
lobe sum expression. The latter converges very fast for regular arrays, and is related to the
Floquet mode sum expression. Thereby it is possible to treat array antennas as apertures
and use the aperture theories in Chapter 7. The classical array links to the modern MIMO

array via the far-field function of the embedded element, as explained in Chapter 3.

Antenna analysis is always subject to approximations. I hope that my approaches will help
in choosing the approximations that give the most accurate valid results.

Learning outcome of Antenna Engineering course at Chalmers

The major parts of the book are used as literature in the course Antenna Engineering at
Chalmers. This is offered within two international Master programs at Chalmers, on i)
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Wireless, Photonics and Space Engineering and ii) Communication Engineering. The Mas-
ter program administration required that we defined some expected learning outcomes for
the students. I have chosen to list these learning outcomes below, because they may be useful
for others. This course has 14 double lecture hours spread over 7 weeks, and a corresponding
number of tutorial hours. There are also three antenna laboratory exercises related to i)
design of microstrip patch antenna, ii) measurements in anechoic chamber, and iii) measure-
ments in reverberation chamber. There are not enough lectures to cover all the material in
the book, so the most theoretical parts of Chapters 4, 6 and 11 are excluded from the course,
and some additional material is not mandatory. I have chosen to teach the excluded parts
for my PhD students in an advanced course called “EM theory for antenna specialists”. This
includes also supplementary material from several journal articles.

The expected learning outcome after having followed the Antenna Engineering course at
Chalmers are: The overall aim of the textbook is to provide the reader with an under-
standing of antennas for use in both traditional line-of-sight (LOS) systems and in modern
wireless communication systems with multipath and Rayleigh fading, ranging from initial
design with simple classical design formulas to numerical design and characterization with
measurements. With this understanding the reader should be able to:

a) Describe how antennas for line-of-sight (LOS) systems work and are characterized. Ex-
amples of LOS systems are radio telescopes, radar, radio links (point-to-point and point-to-
multipoint communications) and satellite communication systems.

b) Describe how antennas in multipath environment with fading behave and are character-
ized, such as antennas for mobile terminals and devices such as mobile phones, including also
the characterization of the whole mobile terminal and the user interaction. This is unique
for the book!

c) Describe the most common materials used in numerical antenna analysis as well as in
practical antenna design.

d) Explain the different factors contributing to the efficiency and gain of different types of
antennas.

e) Explain the physical limitations of antennas; such as miniaturization and bandwidth
limits of small antennas, maximum gain limits of large antennas including supergain, and
correlation and efficiency limits of multiport/multibeam array antennas. This is unique for
the book!

f) Explain how different antennas can be analyzed in terms of classical incremental elemen-
tary sources, by using a modern and compact non-differential vector notation and numerical
integration. The incremental elementary sources are the electric current, the equivalent mag-
netic current and the directive Huygens source. This is unique for the book!

g) Apply his knowledge about antenna analysis to design antennas using classical formulas
and design curves for the most traditional antenna types; such as dipoles, slots, horns, re-
flectors and phased arrays. Good initial designs with classical formulas are important for a
successful numerical design with a professional antenna CAD tool.

h) Apply his knowledge about characterization of antennas for LOS and fading environment
to measure antennas, both in classical anechoic chambers and in modern reverberation cham-
bers, respectively. The reverberation chamber is a multipath emulator, in which also active
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mobile terminals such as mobile phones can be measured.

April 2015
Per-Simon Kildal
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Chapter 1

Introduction

An antenna is a device for radiating or receiving electromagnetic waves. It was originally
called an aerial before the name antenna became more popular, and sometimes simply called
a radiator. It is a transducer for coupling electromagnetic energy between free space and
a waveguide, transmission line, or receiver/transmitter. An antenna is often directional in
the sense that it concentrates waves in certain directions in space relative to waves in other
directions. In this sense it represents a directional filter in space.

Antennas are needed and used in wireless ground-based telecommunication systems such
as direct broadcasting, point-to-point radio links, mobile telephony, local area networks,
traffic toll systems and navigation. They are also used in satellite communication systems
for transmission of data, video and telephone signals between earth stations connected to
the ground-based network, and for broadcasting satellite-TV signals. Antennas are used in
mobile earth terminals. And, we even have mobile hand held phones with small antennas for
receiving (and transmitting) signals from (and to) satellites, which relay the signals down to
ground again all around the earth. Furthermore, antennas find applications in military and
civilian surveillance radars, such as ground-based weather radars and air traffic radars, and
air-borne military search and scouting radars. There exist air- and satellite-borne synthetic
aperture radars (SARs) for very high resolution surveillance of land resources and pollution,
and of military and civilian activity on sea and land (e.g., for surveillance of national fishing
borders). SARs make it is possible to synthesize a larger “antenna” than the actual antenna’s
physical size by moving the antenna and using signal processing. Antennas are also used in
scientific radars (e.g., for ionospheric and planetary research). Finally, antennas are used in
receive systems for radio astronomy, meteorology, and for detection of signals from air-borne
radars (early warning). Some radio telescopes for radio astronomical observations are large
spectacular examples of high technology antenna designs.

The art of antenna design is special and very interesting because so many different disci-
plines are involved. The antenna is often the largest and most expensive structural part of
a microwave system, and it must, for physical reasons, have a certain size in terms of wave-
lengths in order to satisfy the system’s directional filter requirements. Therefore, good and
compact antenna solutions require designs which are thoroughly worked through, both from
a mechanical and an electromagnetic points of view. Knowledge of material technology and
manufacturing processes is needed. It may often be desirable (but not always be possible) to
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Figure 1.1: Examples of different antenna types.

modify the system requirements in order to find the most cost-effective solutions. Therefore,
the design of advanced and optimized antennas involves systems engineering, mechanical
engineering, and electromagnetic engineering.

Today, industrial antenna design involves a combination of computer simulations (by different
commercial or semi-commercial computer programs) and experimental developments. In both
cases, it is advantageous for engineers to have a reasonable background in antenna theory in
order to increase their creativity and productivity. All numerical implementations of different
analysis methods suffer from approximations, so the results must always be investigated with
respect to convergency and assumption validity. In addition, the methods themselves are only
valid under certain conditions. For example, ray tracing methods are only valid when the
structure is smooth and large in terms of wavelengths.

Accurate measurements of radiation patterns and in particular directivities are complicated
and require theoretical knowledge and experience. Such know-how may even be more im-
portant than good measurement equipment during the development of an antenna. Still, a
modern measurement equipment is necessary in order to be able to verify the performance
with sufficient accuracy to satisfy a critical customer. No quality-conscious customer will
accept an antenna based on theory or simulations alone. Accurate measurements are always
needed to validate the model predictions. There are certain electrical (or rather electromag-
netic) system requirements for an antenna, such as gain and sidelobe levels. Common for
these constrains is that they are easier to satisfy when the antenna is larger in terms of wave-
lengths. However, the antenna is often the largest mechanical part in a microwave system, so
the specific application puts requirements on its size, weight and cost, thus calling for small
antennas. Very often the antenna engineer’s task is to do a trade-off between size and/or
cost and performance. His job is to find the smallest or cheapest antenna which can satisfy
the electric requirements.
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Figure 1.2: Examples of different phased-array antenna types in transmitting mode. The latter is
used in MIMO systems.

1.1 Antenna types and classes

There exist several different basic antenna types (Fig. 1.1). The ones which will be treated
in this book are wire antennas, slot antennas, microstrip antennas, horn antennas, reflector
antennas, and linear and planar arrays of them. There are also other types which are not so
common (e.g., dielectric resonator antennas and leaky wave antennas), and a large class of
ultra-wideband and frequency independent antennas that will not be treated either, except
for being mentioned in terms of their fundamental limitations in Chapter 11. In principle
any structure of arbitrary material can be designed to radiate in free space if its size is larger
than typically a few tenths of the free-space wavelength. Some antennas may radiate well
even when they are apparently shorter than this. However, in such cases they are located on
a box or a ground plane (or held by a hand), and it is the box or ground plane (or hand)
which gives the sufficient size for the antenna to radiate. A human finger may actually work
well as an antenna. Old radios without built-in antennas often work (or work better) if a
finger touches the antenna input connector.

A linear or planar array antenna consists of several antenna elements, which are fed via a feed
network (Fig. 1.2). If an adjustable phase shifter is connected to each element, the direction
of the main beam of the antenna can be phase steered by changing the phase of each of the
phase shifters. There may even be active microwave modules at each element amplifying the
transmit (or receive) signals. Then, the antenna is referred to as an active antenna. The
transmitted or received amplitude of each element can be changed by adjusting the gain of
each module. The active antenna can be phase steered by including a phase shifter in each
module. We can have control of both the shape and direction of the beam by changing both
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Figure 1.3: Examples of different classes of antenna beams.

the amplitude and phase of each element. The element modules may be connected directly
to a digital processor (computer) via an analog-to-digital (AD) converter (on reception) or
a digital-to-analog (DA) converter (on transmission). In these cases the antenna beam can
be controlled digitally. We refer to this technique as digital beam-forming and to the an-
tennas as adaptive antennas or signal processing antenna systems. Such antennas are also
called multi-port antennas, because the port of each element is accessible. They are in par-
ticular used at both the transmitting and receiving sides in so-called MIMO (Multiple-Input
Multiple-Output) communication systems. Then, the communication speed can be improved,
in particular through environments which cause large time-varying signal variations, so-called
fading . The active modules in such arrays are often realized as microwave monolithic inte-
grated circuits (MMICs) in order to reduce the size and the cost of manufacturing modules
in large numbers. In the upper microwave and millimeter wave regions, active antennas may
have thousands of elements. At millimeter wave frequencies the antennas may also be inte-
grated with the active module on the same chip. We refer to such antennas as integrated
antenna systems.

Antennas are also classified in terms of the shapes of their radiation patterns (Fig. 1.3). Most
antennas are pencil-beam antennas with a narrow main beam and low sidelobes. Pencil-beam
antennas on satellites illuminate a relatively small spot on the earth’s surface, and they
are called spot-beams antennas. On satellites there may also be contoured-beam antennas
with beams which are shaped to cover certain geographical areas on the earth. Radars
may have cosecant-squared antennas with a radiation pattern in the elevation plane which
varies as csc2(θ) = 1/ sin2(θ). The reason for this is that the sensitivity in this case becomes
independent of the height of the target above the ground. Most antennas have only one main
beam, but multi-beam antennas are also attractive in many applications. There exist also
omnidirectional antennas, sector-beam antennas, antennas with hemispherical coverage, and
many more.



5 CHAPTER 1. INTRODUCTION

1.2 Brief history of antennas and analysis methods

The first antenna was designed and manufactured by Heinrich Hertz when he experimentally
discovered electromagnetic waves in 1888, twenty four years after Maxwell’s theoretical predic-
tions were revealed to the Royal Society in London. That was a parabolic metal cylinder with
a dipole antenna along its focal line, see [1] and [2]. Marconi achieved a successful transat-
lantic transmission in 1901 by using an array of 50 copper wires for the transmitting antenna
in England. The theories of radiating apertures, reflectors and array antennas were developed
during World War II in connection with the design of the military radar. These were later
published in the book by S. Silver [3] in the M.I.T. Radiation Laboratory Series. Among
other early important antenna books are the book on helical antennas by J.O. Kraus [4], the
book by S.K. Schelkunoff which contains both theory and experiments [5], and the book on
linear antennas by R.W.P. King [6]. Several later antenna books are included in the reference
list [7]-[29].

The development of the antenna area has been strongly influenced by the development of
theories, analysis methods and numerical techniques, and by the growth of computer tech-
nology. The oldest analysis method still in use is geometrical optics, which is a ray technique.
The classical reflection law was described already by Euclid 300 years BC. The lens formula
was introduced by Alhazan around year 1000 AD. Snell found the refraction law in 1621, and
further developments were done during the seventeenth (Fermat) and nineteenth century
(Hamilton) to what we today refer to as classical geometrical optics. The classical descrip-
tion is based on straight rays and power densities. The geometrical optics used today is
commonly referred to as modern Geometrical Optics (GO) and includes phase, polarization
and field strength descriptions (Luneberg 1944 and Kline 1951). The GO is a high frequency
approximation that can be used when the wavelength is small compared to the structure
variations and dimensions. The GO fields propagate along straight lines (rays) in free-space
regions and reflect from structure boundaries. Several scientists including Sommerfeld (1884)
studied the effect of edges and found that there exist diffraction effects not accounted for
by GO. In order to overcome this problem, straight diffracted rays were added to the GO

description (Keller [30]). This theory was later extended by Kouyoumjian and Pathak (1974-

81) to a Uniform Geometrical Theory of Diffraction [31]. This is commonly known under the
abbreviation UTD and is widely used in antenna analysis. The GO and UTD are more gen-
erally referred to as asymptotic techniques, in the sense that they are asymptotic solutions
of field integrals for high frequency. Similar asymptotic solutions can be derived for cases
other than reflectors and edges by using the principle of stationary phase. The alternative
and related saddle-point method is also applicable. The ray descriptions of GO, UTD and
other asymptotic techniques are not valid in caustic regions1. This is a severe limitation of
such high frequency methods.

The wave theories do not suffer from the lack of validity in special regions, such as is the
case for GO and UTD. They were developed by Huygens (1690), Hook, Grimaldi, Young and
Fresnel (1830). Finally, in 1864, Maxwell connected these classical wave theories together with
the theories of optics in what we now refer to as Maxwell’s equations. These are the basis
of all electromagnetic modeling today. In modern antenna theory and numerical methods,
equivalent sources play an important role in the formulations. The equivalence theorem
was introduced by S.A. Schelkunoff in 1936 and is related to the principle of Huygens from

1 This means regions where neighboring rays intersect.
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1690.

The GO and UTD are well suited for numerical modeling and several computer codes exist.
However, they can only be used when all structure parts are large in terms of the wavelength.
Maxwell’s equations can be rearranged to provide electric and magnetic fields as integrals
over a product of a current distribution and a Green’s function. The latter is the field due to
an incremental current source, which we may alternatively call a point source response. The
current distribution is unknown and induced by other impressed sources, and it may or may
not represent physical current. In the latter case we call it an equivalent current. This may
be specific for a field formulation only valid in some part of solution space. When we apply
a boundary condition to the integral expressions for the fields, we get an integral equation.
Integral equations are nowadays solved by the Method of Moments (MoM), as introduced
to the antenna community by Harrington [32]-[33]. Several computer programs for antenna
design based on the MoM are available. The MoM cannot be used when the structure is very
large in terms of the wavelength due to the large computer memory and long computation
time needed. Therefore, an antenna type of a given size may often be analyzed by MoM at
low frequencies and by UTD at high frequencies.

Modern numerical methods also involve solving the differential forms of Maxwell’s equations
directly. When implemented for harmonic time variation these are referred to as Finite
Element Methods (FEM ), and when implemented in the time domain they are referred to
as Finite Difference Time Domain (FDTD) methods. Several general commercial and semi-
commercial computer codes for antenna analysis using FEM or FDTD are available. The
computer times of FEM and FDTD codes are normally much larger than for MoM codes.
Three-dimensional FEM and FDTD are only applicable to structures which hardly exceed a
few wavelengths in extent.

An analytical method which has been very popular for the last decade is the spectral do-
main method . This method is conveniently used to analyze microstrip antennas on planar
multi-layer structures in combination with MoM. The approach is based on Fourier transfor-
mation of the fields in the two uniform directions of the structure to obtain a spectrum of
plane waves or rather a spectrum of one dimensional (1D) solutions. The fields have given
harmonic variations in the two dimensions representing the spectral domain. The method
is extendable to other similar three-dimensional (3D) field problems involving radiating ele-
ments on structures which are uniform in two directions of the coordinate system, such as
circular cylindrical and spherical multilayer structures. All these 3D problems can be solved
by using a spectrum of 1D solutions (i.e., in terms of a spectrum of plane, cylindrical or
spherical waves, respectively). The 1D solutions for the cylindrical and spherical structures
represent a discrete spectrum, and are therefore also referred to as modal solutions. Spectral
domain methods can be used to analyze antennas on structures that are uniform in only
one direction of the coordinate system, such as cylindrical structures with arbitrary cross-
sectional shape and Bodies of Revolution (BOR). In these cases the solutions are formulated
as a spectrum of two-dimensional (2D) solutions. The FEM is also often used in combination
with such spectral domain methods. There is some theory about spectral domain approaches
in Chapter 6.
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incident field Ei

scatterer

total field Etot = Ei + Es

scattered field Es

Figure 1.4: Definition of a scattering problem.

1.3 Terminology, quantities, units and symbols

The Institute for Electrical and Electronics Engineers (IEEE) have defined a standard ter-
minology for antennas, [34]. Most of the terms for characterizing antennas, which will be
introduced in Chapter 2, follow this standard. In addition, in the present section we define
some special terms in antenna theory, which are commonly used to describe different physical
phenomena. This is because these terms are easily confused with each other. Also there is
a need to define the symbols used for the pertinent quantities and explain the units of the
different field quantities to appear in later chapters. Therefore, this section also introduces
some common terminology for quantities, symbols and units, used in this book.

1.3.1 Radiation or scattering

The area of electromagnetic radiation is often divided into antennas and scattering . Simply
speaking, the area of scattering is electromagnetic radiation (or reradiation) excluding an-
tennas. This means prediction and reduction of Radar Cross Sections (RCS) of objects, and
determining the type and characteristics of a passive object from measurement of electro-
magnetic fields. The latter is normally referred to as inverse scattering or electromagnetic
signature. The word scattering comes from the definition of a field problem where an object
located in free space is illuminated by an incident field, where the incident field Ei is the
observed field when the object is removed (Fig. 1.4). The total field Etot is the observed
field when the object (i.e., the scatterer) is present, from which we define the scattered field
due to the object as Es = Etot − Ei. The scattered field can be expressed as an integral
over equivalent sources at the surface of the scatterer. The scattered field is radiating in
all directions away from the scatterer. The scattered field is, in particular, large in shadow
regions. In fact, in shadow directions it has nearly the same size as the incident field and
nearly opposite phase, so as to give almost zero total field (i.e., shadow). The scattering in
the direction of the shadow is referred to as forward scattering (i.e., scattering in the direction
of propagation of the incident wave). Backscatter is the scattering in the direction of the
distant source of the incident field. The distinction between the antenna and scattering areas
lies in that antennas radiate energy whereas in scattering a known incident wave is redirected
(scattered). However, the distinction between the antenna and scattering problem is not so
evident. Antenna analysis involves also scattering analysis.
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Figure 1.5: Illustration of reflection, edge diffraction and aperture diffraction.

1.3.2 Reflection, refraction and diffraction

The terms reflection, refraction and diffraction are associated with ray descriptions such as
GO and UTD. Rays are always straight in free space. In a GO ray field problem we have
an incident field which is propagating along rays originating from the source. When such
a ray hits the smooth surface of an object, it is reflected. The field propagating along the
GO reflected ray is called the reflected ray field. There may also be a so-called refracted ray
continuing into the object. This GO refracted ray will change direction by refraction at the
interface, but it will thereafter be straight until it meets a new material interface, provided
the material of the object is homogeneous.

Keller described in 1985 diffraction as any process whereby electromagnetic wave propagation
differs from GO . In particular, we have the term edge diffraction associated with the rays
diffracted from the edges of objects as described by UTD . The fields along these rays are called
the diffracted ray fields. GO and UTD predict infinite fields in points where neighboring
rays intersect (and hence GO and UTD are not valid there). Such points are referred to
as caustics, and the actual field behavior is described as caustic diffraction. Parallel rays
(i.e., plane phase-fronts) often originate from apertures. Parallel rays intersect at infinity.
Therefore, GO cannot be used to describe the wave propagation from a plane aperture with
a constant phase distribution to a large distance from the aperture. The actual radiation
field behavior at large distance is in this case referred to as aperture diffraction. Aperture
diffraction causes a bundle of parallel rays to transform to a bundle of diverging rays with an
associated angular field variation, when the distance from the aperture is larger than 2D2/λ,
with D the aperture diameter and λ the wavelength. Most of the diverging rays are contained
within a diffraction cone with a cone angle of approximately 2λ/D radians. Ray fields cannot
easily be separated into incident and scattered fields as defined in the previous subsection.
The incident field of GO is reflected, shadowed, refracted and diffracted by an object, whereas
the incident field of a scattering problem is the field when the object is removed. The latter
is therefore not shadowed by the object.



9 CHAPTER 1. INTRODUCTION
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Figure 1.6: Illustration of GO rays, phase-fronts and phase paths.

1.3.3 Rays, waves, phase-fronts and phase paths

The ray technique is inherently a high-frequency approximation which breaks down in certain
regions. The ray fields have a local description following straight lines in space. In spite of
this, single rays cannot exist. Single rays are not physical. They always exist in ray bundles
which are either converging, diverging or parallel. Therefore, single rays cannot propagate
through a small hole in a metal screen and continue straight forward. They rather diffract
through the hole in such a way that a spectrum of straight rays appears on the shadow side
of the screen, propagating in all directions.

The wave description is different. The wave description is global in the sense that the
description itself links together fields at one point in space with the fields in the rest of space.
Still the wave and the ray descriptions are related. A wave has phase-fronts (i.e., surfaces in
space over which the phase is constant). The normals to a phase-front define the propagation
direction of the wave. The phase velocity depends on the shape of the phase-front. If we
follow the propagation direction along normals to successive phase-fronts, we get a curve
which is called the phase path. In spite of this, they are strongly related to rays. In field
regions where the phase paths are straight, they represent GO rays. However, the phase
paths bend through caustics and focal regions; whereas, the GO rays go straight through
such regions. The GO description is not valid in the caustic region but outside it. A single
phase path may coincide with one GO ray on one side of a caustic or focal region, and with
another different GO ray on the other side. Inside a caustic region it is possible to use a
separate GO ray description that is valid only inside the caustic. The diverging rays in the
far-field region of Fig. 1.5 and 1.6 are valid GO descriptions in the far-field region, which is
a caustic region for the parallel rays closer to the antenna.
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1.3.4 SI units for fields and sources, and dB

The International System of units (SI) units are for length meter (m), for time second (s), for
voltage volt (V), and for current ampere (A). The units of both the electric field strength E

and the equivalent magnetic surface current density M are volt/meter (V/m). The magnetic
field strength H and the electric surface current density J have both the unit ampere/meter
(A/m). However, these units are rarely used in antenna work. Instead, the fields and currents
are presented as relative values normalized to their maxima or to other values. The unit of
radiation impedances is ohm (Ω), and radiation admittances are in Siemens (S), and similarly
for mutual impedances and admittances. These units are commonly used, but in many cases
the radiation impedance and admittance are more conveniently replaced by a dimensionless
amplitude reflection coefficient. The unit of power is Watt (W) or milliWatt (mW). We have
1 W = 1 VA.

In antenna work relative numbers are most often presented in dB . The dB value is calculated
as

|A/Aref |dB = 20 · log |A/Aref | dB ,

where A is the amplitude of the voltage, current, reflection coefficient, field strength or surface
current density, and Aref is the reference value. Alternatively, it is calculated as

|P/Pref |dB = 10 · log |P/Pref | dB ,

where P is the power or power density and Pref is the reference power or power density. The
resulting dB values are the same in both cases because

|A/Aref |2 = |P/Pref | .

Sometimes a letter is added to the dB abbreviation in order to explain the reference value.
For example, dBm means a power ratio in dB where the reference level is 1 mW, and dBW

means a reference value of 1 W. In antennas we measure the antenna gain in dBi, which
means dB relative to isotropic radiation, i.e, radiation that is spread equally much in all
directions in space. We measure the figure of merit of a receiving antenna in dB/K (i.e., “dB

over K”) which means in dB relative to 1/Kelvin. The latter two units will be described in
Chapter 2.

Table 1.1: Relative efficiencies and corresponding values in dB.

Relative efficiency: 1.0 0.99 0.95 0.90 0.80 0.64 0.50

Efficiency in dB: 0.0 -0.04 -0.22 -0.50 -1.0 -2.0 -3.0

All antennas can be characterized by different efficiencies and subefficiencies. These are often
presented as the relative value itself or in percent (%). In the present book we consequently
choose to give all such values in dB. The reason is that percent values often give wrong
impressions. For example, increasing an efficiency by 10 % sounds the same when increasing
it from 40 % to 50 % as when increasing it from 80 % to 90 %. In reality, the former increase
is worth double of the latter. This is clearly seen from the dB values which are 1.0 dB in the
former case and 0.5 dB in the latter. Therefore, results are more meaningful and more easily
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Figure 1.7: Symbols used in the drawings in this book.

interpreted when presented in dB. Tables 1.1 and 1.2 show some amplitude and power ratios
and their corresponding dB values.

Table 1.2: Amplitude and power ratios and corresponding dB values.

Amplitude ratio: 1.0 0.32 0.1 0.032 0.01

Power ratio: 1.0 0.1 0.01 0.001 0.0001

Ratio: 0 dB -10 dB -20 dB -30 dB -40 dB

1.3.5 Symbols

The symbols used in the drawings in this book are explained in Fig. 1.7.

1.4 Vector notation and coordinate transformations

This book uses the vector notation in all formulations. This makes the formulas compact,
and easy to interpret and remember. Another advantage is that the vector formulations are
independent of the coordinate system chosen. Some may comment that vector formulas are
not easy to use in practice or to program, but this is not true. The vector notation makes
it easier to get a good structure of a computer program with reusable subroutines. Thereby,
the time needed for developing a program is reduced.
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1.4.1 Some vector formulas

In this book, a vector ~E is written in bold type as E and a unit vector ~n as n̂. A vector field
is a function of the observation point coordinates. This is written as E(r) where r = [x, y, z]

is the coordinates of the field point in the coordinate system defined by the unit vectors
x̂ = [1, 0, 0], ŷ = [0, 1, 0] and ẑ = [0, 0, 1]. E = [Ex, Ey, Ez] contains the three components of
the vector field in the same coordinate system. E, r, x̂, ŷ and ẑ are readily programmed as
complex or real one-dimensional arrays with 3 elements having the values of their x-, y- and
z-components in the coordinate system. In this book expressions for the H-field are starting
with 1/η where η is the wave impedance. In computer programming it is possible to use η0H

as an array variable instead of H, where η0 is the free space wave impedance. Then, the
values of the normalized H-field, η0H, get the same order of magnitude as the values of the
E-field, which can make it easier to interpret the results of a computation.

In order to simplify mathematical formulations, we choose local coordinate systems in which
the local geometry is easily described. When a vector field E = [Exl , Eyl , Ezl ] is known in the
local coordinate system, its components in the global coordinate system are found by the
formula

E = Exl x̂l + Eyl ŷl + Ezl ẑl , (1.1)

where x̂l = [ax, ay, az], ŷl = [bx, by, bz] and ẑl = [cx, cy, cz] are the unit vectors defining the local
coordinate system with ax, ay, az, the components of x̂l in the global coordinate system and
correspondingly for ŷl and ẑl. Eq. (1.1) is to be used as follows to calculate the component
Ex of E in the global coordinate system,

Ex = Exlaxl + Eylbxl + Ezlcxl , (1.2)

and corresponding for Ey and Ez. The observation point r = [rxl , ryl , rzl ] in the local coordi-
nate system is transformed to r = [rx, ry, rz] in the global system by

r = r
0

+ rxl x̂l + ryl ŷl + rzl ẑl , (1.3)

where r0 = [rx0 , ry0 , rz0 ] is the coordinates of the origin of the local coordinate system in the
global coordinate system. Eq. (1.3) is to be used as follows:

rx = rx0
+ rxlaxl + rylbxl + rzlcxl (1.4)

and similarly for ry and rz.

Considering a vector field E in the global coordinate system, we can find its component (i.e.,
projection) Er in any direction (defined by the unit vector â = [ax, ay, az]) by the dot- (or
scalar -) product

Er = E · â = Exax + Eyay + Ezaz . (1.5)

If â is a complex unit vector, we define the component of a complex vector field E along â
by the dot-product between E and the complex conjugate of â, i.e.,

Ea = E · â∗ = Exa
∗
x + Eya

∗
y + Eza

∗
z . (1.6)

This dot-product is normally referred to as a symmetric product in mathematical text books.
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We also make frequent use of the vector (or cross) product. This is defined by

M = E× r̂ =(Eyarz − Ezary )x̂− (Exarz − Ezarx)ŷ+

+(Exary − Eyarx)ẑ .
(1.7)

This can be evaluated more rapidly as follows. The result of a cross product between two
vectors E and r̂ is a new vector which is orthogonal to both E and r̂ with magnitude

|M| = |E||r̂| sinα , (1.8)

where α is the angle between E and r̂. Thus, if r̂ is a unit vector and E is orthogonal to r̂,
(i.e., E ⊥ r̂), M gets the same magnitude as E. The direction of M can be rapidly found
by using the right-hand rule as follows. Straighten out the four joint fingers of the right
hand and orient them in the direction of the first vector E. Let your thumb point normal
to the other fingers in the plane of the flat hand. Orient your flat hand in such a way that
if you bend the joint fingers 90◦ at their roots they will point along the second vector r̂.
Then, the direction of the resulting vector M is the normal to E and r̂ in the direction of the
thumb. It is also possible to find the direction of M by considering a screw with right-handed
threads.

The following vector formula will also be frequently used,

E = K[J− (J · r̂)r̂] , (1.9)

where K is a constant. This operation gives a vector E which is in the plane of the vectors
J and r̂, but with no component along r̂. We can express this as E being proportional to J

after J’s projection, J · r̂, along r̂ has been subtracted.

1.4.2 Coordinate transformations

In order to transform a vector field from one local coordinate system to the global coordinate
system, we need to know the unit vectors of the local coordinate system in terms of their
components in the global system. Such transformations of unit vectors of coordinate systems
are well known. They are given in Appendix C for the sake of convenience.

1.4.3 Dyads

Dyads are used to provide compact notations for given vector operations. They are often
used in connection with formulations of Green’s functions (i.e., field solutions due to point
sources). For example, the vector formula

E = K[J− (J · r̂)r̂] (1.10)

may be expressed in terms of a dyad Ḡ as

E = J ·G(r̂) , (1.11)

where G(r̂) is defined by the following vector operation on an arbitrary vector J,

J ·G(r̂) = K[J− (J · r̂)r̂] . (1.12)

Thus, the purpose of introducing dyads is to simplify vector expressions. When a dyadic
operator is applied to a vector J, the resulting quantity is a vector with an amplitude and a
direction which are generally different from those of J.
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Figure 1.8: Classification of EM analysis methods.

1.5 Overview on EM analysis methods by S. Maci

The methods of analysis of antennas can be divided into high-frequency and beam (HF&BM)
methods and computational electromagnetics (CEM) methods. Both can be implemented in
software analysis tools; HF&BM are based on analytical formulas, whereas CEM methods are
based on numerical algorithms. A synthetic overview is shown in Fig. 1.8, where the most
used acronyms are given.

HF&BM are used when the size of the problem is very large in terms of wavelengths. Among
the great variety of HF Methods, one can distinguish ray-methods (GTD, UTD, GO), which are
based on asymptotic solutions of the wave equation. These methods represent the asymptotic
field in terms of rays. Ray tracing algorithms must be implemented to treat ray-fields in
complex environments, and this constitutes the main drawback in numerical implementation.
These methods are suited for treating problems of thousands of wavelengths in size, like those
encountered when analyzing antennas or the scattering from complex structures, such as
aircrafts or ships. Also, they play an important role when simulating scattering of complex
multipath scenarios, like in urban environments.

Wave Physical Methods (WPM, e.g., PO, PTD, ITD) represent the scattered or radiated
fields in terms of radiation integrals and provide an asymptotic HF approximation of the
integrand. The most used among them is Physical Optics (PO) [35] (treated in Chapter 7
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of this book), which describes the field scattered by metallic smooth scatterers in terms of
a free-space radiation integral of equivalent electric currents. At each point of the smooth
surface, these currents are identified as those induced on a flat infinite metal plate at the
tangential point. PO is widely used in the analysis of regular and shaped reflector antennas.
Among WPM methods, the incremental (PTD, ITD, ILDC) methods provide diffracted or
fringe field representations in terms of line integrals along edge-type discontinuities. Beam
methods are suitable for representing fields from near to far fields and are used for problems
involving lenses, multiple reflectors and quasi-optical systems. The latter are often referred
to as beam waveguides. Gaussian Beams (GB) and Complex Point Sources (CPS) will be
described later in this book.

Further historical details on high frequency techniques are given here. The Geometrical The-
ory of Diffraction (GTD) by Keller [30] postulates the existence of diffracted rays compensat-
ing the discontinuity of GO field at the so-called incidence or reflection Shadow Boundaries
(SB). These latter are those boundaries where incident or reflected rays abruptly emerge or
disappear due to an edge discontinuity. Keller’s original GTD formulation of diffracted rays
was invalid exactly at the SBs, where the contribution of diffracted rays is more important.
The UTD by Kouyoumjian and Pathak [31] improves this description for wedge-type disconti-
nuities by introducing a transition function that can be multiplied with the GTD-formulated
diffracted rays. Thereby, this gives a uniform compensation of the discontinuity at the GO

ray-field SB. The UTD transition function tends to unity outside a narrow transition region
across the SB and then recovers the GTD description. In [36]-[38] Pathak extended GTD to
the problem of curved surfaces, making use of a canonical solution for cylinders.

Ray field theories like GO, GTD and UTD, fail in the neighborhood of caustics of reflected
or diffracted rays. In fact, the power density associated with ray-fields become infinite there,
and a wave physical description like PO should be invoked to overcome this impairment.
PO is valid also at caustics of reflected and diffracted rays and this is why it is useful in
calculating the field radiated by parabolic reflector antennas. Far from caustics, the asymp-
totic evaluation of the PO radiation integral reduces to the GO description, plus approximate
diffracted rays from the edges. These diffracted rays have a different amplitude coefficient
than those predicted by UTD and they predict a less accurate field. To correct the inaccu-
racy of the asymptotic PO integral, Ufimtsev introduced the Physical Theory of Diffraction
(PTD) [39]. PTD additionally improves the PO currents close to edges by “non-uniform” or
“fringe” currents related to those induced by diffractive effects on the surface of the scatterer.
The description of the PTD is given in terms of PO plus line integral of “elementary edge
waves” along edge discontinuities. The PTD elementary edge waves were also referred to as
Incremental Length Diffraction Coefficients (ILDC) by other authors [40]-[41]. An historical
overview on the origin and development of PTD can be found in [42]. A different approach is
suggested in the Incremental Theory of Diffraction (ITD) [43]-[44], which in contrast to PTD

satisfies reciprocity.

While HF&BM, which have roots in optics, have been developed since the sixties, CEM meth-
ods had their significant evolution since the nineties, with a great improvement in the last
fifteen year [45]-[46]. CEM methods are versatile and general since they can be applied to a
variety of structures of any shape and material structure. On the other hand, the electrical
size of the solution problem increases enormously, and therefore their disadvantage is the
large demand of dynamic memory and CPU time. CEM methods can be divided in Integral
Equation (IE) Methods, Partial Differential Equation (PDE) Methods, and Modal Expan-
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sion (MEX) Methods. These three methods are today often combined in many commercial
software tools because each method is appropriate for different purposes. In particular, IE

are mostly used in open domains, while PDE and MEX are mostly used in closed domains.
However, IE methods can be used in closed domain as well, but they are not competitive with
PDE and MEX methods. Reversely, PDE can be used in open domains, provided that the
domain is closed with absorbing boundary conditions or other alternative techniques. Anal-
ogously, MEX can be used in open domains (for instance using Spherical Mode Expansions),
but limited to specific domain shapes.

IE methods express boundary conditions in terms of radiation from equivalent currents on a
closed surface. These unknown currents are thereafter expanded as a sum of basis functions
with unknown coefficients. Next, these coefficients are determined by averaging the boundary
condition of the integral equation using so-called testing functions. This solution scheme is
known as Method of Moments (MoM) [32], treated in Chapter 4 of this book. The MoM can
be formulated in both space and spectral (wavenumber) domains. The Spectral Domain (SD)
methods are mainly used for multilayer structures and patch antennas, and are described in
Chapter 6.

MoM reduces the integral equation to a set of linear algebraic equations whose solution
requires the inversion of a square matrix. Depending on the matrix size (namely on the
number of unknown), different strategies are used, spanning from direct matrix inversion to
iterative processes (some more details are given in Chapter 4, Section 4.8). Due to memory
storage requirements, when the number of unknowns exceeds some hundreds of thousands
(i.e., size of some tenth of wavelengths), it is not possible to formulate the problem in a
conventional way. Then, groups of unknowns should be used to render a sparse MoM matrix,
with the advantage of reduced memory occupation and number of numerical operations. This
concept is pursued in the Fast Multipole Method (FMM) [47]-[48]. To treat large problems,
a valid alternative to matrix sparsification is matrix compression. This can be obtained
by first combining the unknowns of subportions of the problem into special basis functions,
called Characteristic Basis Functions (CBF) [49]-[50] [49]-[50] or Synthetic Basis Functions
(SFX) [51]. For specific problems with circular symmetry, MoM may be formulated in a
special way, which reduces the complexity to the one of a 2D problem. This formulation is
applied successfully to Body of Revolution (BoR) antennas, like conical corrugated horns and
circularly symmetric reflectors. In most of the practical cases, IE methods are formulated
through surface current unknown, and rarely by volumetric unknowns (polarization currents),
being in the latter case not competitive with respect to finite element approaches.

A second class of CEM methods is based on the solution of Partial Differential Equations
(PDE) derived from Maxwell’s Equations directly. In contrast to Integral Equations, which
use currents on surface as unknowns, PDE uses the EM fields in the volume of interest
as unknowns. There are two different classes of PDE methods arising from two different
solution schemes: the Finite Difference and the Finite Element schemes. In the first scheme,
finite difference equations are used to approximate the partial derivatives. This is done in
both space and time, leading to the Finite Difference Time Domain (FDTD) method [52]-
[53]. Since FDTD is implemented in time, it can cover wide frequency ranges in a single
simulation run when a broadband time-pulse is used, and it can also accurately treat non-
linear material properties. The finite difference equations are solved in leapfrog manner,
where the electric field vector components are solved at a given instant of time and the
magnetic vector components in the same cell are solved at the next instant of time. The
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process is repeated continuously until the transient or steady-state condition is fully evolved.
Yee applied this concept for the first time to Maxwell’s equation in the seminal paper [54]. The
widely known acronym FDTD is indeed due to Taflove [55]. FDTD is of simple implementation
and gives a good physical understanding of the field evolution when using a valid graphic
interface. It can also treat a wide variety of complex structures and combination of linear
and not linear materials. Furthermore, it fits well for parallel processing in CPUs with such
architectures. On the other hand, FDTD presents the following drawbacks: i) the domain
under study is gridded, and therefore a large volume requires very long, and sometimes
unacceptable computation times. ii) It does not treat resonances in an efficient way so that
convergence is very slow. Finally, iii) it can suffer from instability. In order to truncate
the space-grid, it is possible to use a Perfectly Matched Layer (PML) [56]. PML, introduced
by Berenger in ’94, greatly improved the capability of FDTD, rendering it applicable (and
sometimes competitive with MoM) when analyzing antenna problems.

There exists an alternative formulation of the finite-difference case making use of a Transmis-
sion Line Matrix (TLM) approach [57]. This was very early used in a vector two-dimensional
(V2D) implementation [58]. The BOR problem is also a vector 2D problem. Therefore, this
V2D approach can be used to analyze BOR antenna structures with a computational effort
of smaller order than a full 3D solution [59].

The second solution scheme for PDE is constituted by the Finite Element Method (FEM) [60]-
[61]. FEM replaces the volumetric continuous domain into subdomains (finite elements). The
simplest finite element is a linear tetrahedron with four nodes, located at the four corners.
The unknown functions are then represented by simple interpolating functions with unknown
coefficients. The interpolating functions over the tetrahedron are usually a polynomial of first
(linear) or second (quadratic) order, written in terms of the node positions. Thus, the origi-
nal boundary value problem with an infinite number of degrees of freedom is converted into
a problem with a finite number of degrees of freedom, thus leading to a finite number of
unknowns. The solution scheme is obtained by testing the equations with functions equal to
interpolating functions (Galerkin testing) in a similar way as it is done in MoM. The appro-
priate numbering of the nodes in a global system leads to a linear system which possesses a
limited banded matrix, with relevant advantages in terms of inversion time and memory stor-
age. This renders FEM more convenient than a volumetric MoM, which does not satisfy this
property. The difficulty in using FEM in antenna problems is, as in FDTD, the termination of
the discretized domain. Absorbing boundary conditions can be used for this purpose as well
as a formulation referred to as Finite Element Boundary Integral (FEBI) method [62]-[63].
The latter is based on a separation into internal and external regions through the equivalence
theorem, followed by the imposition of the continuity of the tangential components of the
fields at the interface. The internal region is treated by FEM, and the external region is
treated by IE and solved by MoM. Therefore, FEBI can be also seen as a hybridization of the
FEM and MoM scheme, and it is implemented in various commercial solvers. However, due
to the MoM coupling, FEBI matrices are not banded.

We finally mention those methods which, although not being general as the others, are widely
used because they are extremely fast when applicable. These are the Modal Expansion
(MEX) Methods [64]. They consist in dividing a closed domain in several subdomains where
the modes are known in analytical forms. The modal representations in the different regions
are matched together by applying continuities of tangential fields at the domain boundaries,
which also determines the unknown coefficients of the expansion. The original application of
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this method to waveguide discontinuities and corrugated horns is known under the name of
Mode Matching (MM). Several generalizations of this method are formulated in literature,
which are referred to as Generalized Scattering Matrix (GSM) or Generalized Admittance
Matrix (GAM) [65]-[66]. In both these methods, the domains are more general than simple
waveguide regions, although closed form analytical modes must exist for the fields inside them.
The advantage of these classical methods is that they are extraordinary fast and accurate,
since the problem can be formalized as a microwave network with a limited number of ports.
They are so fast that they can be directly applied during the optimization process of designing
antenna or microwave devices (e.g., corrugated horns and microwave waveguide filters). The
disadvantages consist in their limited range of applicability. However, the applicability can
be extended by hybridization with FEM in domains where modes are not known in analytical
form. The MEX technique applied to periodic structure can be formulated by the use of
Floquet Wave (FW) expansions, thus leading to a method successfully used since the eighties
for the study of Frequency Selective Surfaces (FSS) [67].

A class of hybrid methods, very popular nowadays, is known under the name of Domain De-
composition Methods (DDM) [68]-[70]. These methods solve large boundary value problems
in terms of several smaller domain boundary value domain problems, with overlapped or
disjoined domains. DDM allows for the use of different techniques in the various subdomains,
and thereby massive numerical parallel processing. DDM can be thought as the generaliza-
tion of a MEX method to open domains [71], for those cases where the domains are disjoined
and spherical wave or beam expansions are used in the network description.

Today, all the main software companies for EM solvers have implemented MoM, FEM, FDTD

and Mode Matching in their products, and most of them also have HF ray-based solvers. The
formulations inside the solvers are rapidly evolving in successive releases. However, each of the
most popular software became famous for one particular method. For instance the ANSYS-
HFSSTM [72] has an original release based on FEM, FEKOTM [73] on MoM CSTTM [74], on
a special version of FTDT, GRASPTM [75] on PO and UTD.
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Chapter 2

Characterization of directive
antennas

The purpose of the present chapter is to define and describe in general terms the different
quantities that are normally used to characterize microwave antennas. All these quantities are
functions of electromagnetic fields or currents, and these fields and currents are everywhere
in this book assumed to be time-harmonic. Time-harmonic fields are most conveniently
described by complex vectors. Therefore, we start by defining these as well as the related
time average power density (Section 2.1).

Radiation fields are waves propagating in the radial direction away from the antenna. Far
away from the antenna they can locally be thought of as plane waves. So we describe the
plane wave and its possible polarizations in the rectangular coordinate system in Section 2.2.
This description comes as a simple introduction to the more complicated treatment of the po-
larization of the radiation field in the actual spherical coordinate system in Section 2.3. This
section also deals with the far-field function and the different radiation patterns extracted
from it, as well as the directive gain and the directivity.

Several antennas consist of rotationally symmetric structures that are excited in some way,
e.g., by a dipole located on the symmetry axis. Rotationally symmetric structures are also
called Bodies of Revolution (BOR). For BOR antennas which are excited with azimuthal field
of no or simple variation, there are some important and useful relations between the radiation
fields in different planes. These are described in Section 2.4.

The antenna is always part of a system which also includes at least a transmitter or re-
ceiver. The system performance is best characterized in terms of the antenna gain G (also
called power gain), effective aperture, ohmic losses, antenna noise temperature T and the
figure of merit. In a communication system, the latter is also called G/T (say “G over T”).
These quantities are defined in Section 2.5. We will also present the equivalent circuits of
transmitting and receiving antennas.
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2.1 Time-harmonic electromagnetic fields

We will in this course calculate the electric and magnetic fields generated by given electric
or magnetic source currents1. When the source current varies fast with time, we may get
radiation of propagating electromagnetic fields. Such a wave propagation is most simply
studied for the case that the sources have a steady sinusoidal time variation of the form

cos(ωt+ φ) = <{ej(ωt+φ)} , (2.1)

where φ is the phase in radians and ω = 2πf = 2π/T is the angular frequency in radi-
ans/seconds with f the frequency in Hz and T the period in seconds. Then, all the resulting
fields must be time-harmonic as well. The fields are generally vector functions of all space
coordinates and the time, so we may write

~E(x, y, z, t) = <{E(x, y, z)ejωt} , (2.2)

~H(x, y, z, t) = <{H(x, y, z)ejωt} , (2.3)

where ~E(x, y, z, t) and ~H(x, y, z, t) are instantaneous values of the E- and H-fields, respectively,
at a time t and location r = xx̂ + yŷ + zẑ. E(x, y, z) and H(x, y, z) are time-harmonic vector
fields of the form

E(x, y, z) = Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ , (2.4)

where Ex(x, y, z), Ey(x, y, z) and Ez(x, y, z) are complex functions, and similarly for H(x, y, z).
All the formulas and the results in this book are expressed in terms of such time-harmonic
vector fields (and currents). We do normally not need to generate the instantaneous field and
current functions from the time-harmonic versions, although it can be done by using (2.2)
and (2.3). The instantaneous power P (t) crossing a closed surface S with a normal n̂ can be
calculated from (see [1, Section 8-5.1])

P (t) =
x

S

~E × ~H · n̂dS , (2.5)

where ~E× ~H is called the instantaneous Poynting vector. The fields are periodic with period
T , so the power averaged over a period T must be constant independent of t. It becomes

Pave =
1

T

∫ T

0

P (t)dt =
x

S

(Wave · n̂)dS , (2.6)

where

Wave =
1

2
<{E×H∗} , (2.7)

is the time average Poynting vector or power density vector. The factor 1/2 in (2.7) comes
from time averaging over the product of two cosine functions, containing the harmonic time
dependences of the E- and H-fields, respectively. We could also have removed this 1/2 fac-
tor if we had defined E(x, y, z) and H(x, y, z) as the Root-Mean-Square (RMS). Also called
effective complex fields instead of peak values. The consequence of assuming time-harmonic
electromagnetic fields is that the analysis needs to be done for one frequency at the time. In
practice the analysis must be done for some discrete frequencies over the operational band-
width of the antenna. It is often sufficient to choose the three frequencies representing the
lower band-edge, the center, and the upper band-edge.

1 For more information about radiation from current sources, see Chapter 4.
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2.2 Plane waves and their polarization

At an observation point far away from an antenna we can always regard the radiation field
locally as a propagating plane wave. Therefore, the fields incident on a receiving antenna
can normally be considered as a plane wave. The time-harmonic E- and H-fields of a plane
wave propagating in positive z-direction in free space are described by2

E = Ete
−jkz = [Exx̂ + Eyŷ]e−jkz , (2.8)

H =
1

η
ẑ×E =

1

η
ẑ×Ete

−jkz =
1

η
[−Eyx̂ + Exŷ]e−jkz , (2.9)

where η = 377 Ω ≈ 120πΩ is the wave impedance in free space,

k = 2π/λ

is the wavenumber and λ is the wavelength. Et is the E-field vector with the propagation
factor e−jkz omitted. The wavelength in free space can be calculated from the frequency f
by using

λ =
c

f
,

i.e., λ[mm] ≈ 300/f [GHz] where c = 2.99790 × 108 m/s is the phase velocity in free space (also
called the speed of light). The power density vector becomes

Wave(x, y, z) =
1

2
<{E×H∗} =

1

2η
[E× ẑ×E∗]

=
1

2η
|Et|2ẑ =

1

2η
[|Ex|2 + |Ey|2]ẑ ,

(2.10)

which means that there is a propagation of power in the positive z-direction.

The electric (and magnetic) fields have both x- and y-components, i.e., Ex and Ey, and Hx
and Hy, respectively. The electromagnetic wave is said to be polarized. This property makes
it possible to simultaneously modulate different signals on Ex and Ey, at the same frequency.
Thus, we are able to re-use the frequencies in a communication system and essentially double
the capacity. Generally, we may re-use frequency by making use of any pair of orthogonal
polarizations, not only the x- and y-polarizations. In order to enable use of both polarizations,
both the transmitting and receiving antennas must be designed for good isolation between
the two polarizations. This means that if we have modulated different signals on the two field
components, we must be able to detect them without mutual interference. Such requirements
are formulated by treating one of the polarizations as the desired (co-polar) polarization,
and, when this is excited, the second orthogonal polarization is undesired (cross-polar). The
isolation is then the ratio between the co-polar and cross-polar components. When the second
polarization is excited, this is co-polar and the first is cross-polar. The isolation for this case
will be the same if we consider the same dual-polarized antenna (due to reciprocity).

The polarization is always determined from the characteristics of the E-field and can be
described in terms of a desired co-polar component Eco which is parallel with a co-polar unit
vector ĉo, and an undesired cross-polar component Exp which is parallel with a cross-polar

2 See any textbook on basic theory of time-harmonic electromagnetic fields, e.g., [1].
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unit vector x̂p, which is orthogonal to ĉo. Both ĉo and x̂p are orthogonal to the propagation
direction ẑ. Thus, we can recast the total E-field as

E = (Ecoĉo + Expx̂p)e−jkz . (2.11)

The co- and cross-polar unit vectors are generally orthonormal complex vectors, satisfying

|ĉo|2 = ĉo · ĉo∗ = 1 , ĉo · x̂p∗ = 0 , (2.12)

|x̂p|2 = x̂p · x̂p∗ = 1 , x̂p · ĉo∗ = 0 . (2.13)

Therefore, the co- and cross-polar components of the E-field (Et) can be found by scalar
multiplication of the E-field with ĉo∗ and x̂p∗, respectively, i.e.,

Eco = Et · ĉo∗ , Exp = Et · x̂p∗ . (2.14)

2.2.1 Linear polarization

When the E-field is y-directed, we refer to it as linearly y-polarized. If this is the desired
co-polar polarization, we have3

ĉo = ŷ , x̂p = x̂ , (2.15)

Eco = Et · ŷ∗ = Et · ŷ = Ey , (2.16)

Exp = Et · x̂∗ = Et · x̂ = Ex . (2.17)

For a co-polar linear polarization in x-direction we choose correspondingly4

ĉo = x̂ , x̂p = −ŷ . (2.18)

A linear polarization is often referred to as being horizontal (HOR) or vertical (VER). A
HOR polarization is horizontal relative to the ground. It is defined mathematically by a real
ĉo ⊥ n̂ ⊥ ẑ where n̂ is the normal to the ground and ẑ is the direction of propagation. The
E-field of a VER polarization is not necessarily normal to the ground (i.e., we normally do
not require that ĉo = n̂, but rather ĉo lies in the plane defined by ẑ and n̂). This makes it
possible to use the terms HOR and VER polarizations also of waves not propagating parallel
with the ground, such as a wave leaving ground in a certain elevation direction (Fig. 2.1). The
horizontal and vertical polarizations are often also referred to as perpendicular and parallel
polarizations, respectively, relative to the elevation plane.

Generally, an arbitrary linear polarization can be defined by co- and cross-polar unit vectors
of the form

ĉo = cos ξx̂ + sin ξŷ , (2.19)

x̂p = sin ξx̂− cos ξŷ . (2.20)

We see that ξ = π/2 for a desired y-polarization and ξ = 0 for a desired x-polarization. If we
do not require a specific direction of the linear polarization, we can choose ξ in such a way
that the cross-polar component of the field is minimized.

3 We could also have chosen x̂p = −x̂ or more generally x̂p = ejφx̂ with φ on arbitrary phase.
4 We could also here have chosen x̂p = ŷ or x̂p = ejφŷ in the same way as for the co-polar y-polarization.
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Figure 2.1: Illustration of horizontal (left) and vertical (right) polarization of an antenna with a
certain elevation angle α measured from the horizon.
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exist Matlab code which generates videos of the field vector as a function of z when the time t
increases.



2.2. PLANE WAVES AND THEIR POLARIZATION 26

2.2.2 Circular polarization

A plane wave can also have an E-field that rotates an angle 2π in the xy-plane when the time
passes through a period T . This rotation of the E-field may either be observed i) at a given
position in space as a function of increasing time; or, ii) at a given time as a function of z
along the direction towards which the wave propagates. In both cases the fields may have
either a right-hand or left-hand rotation, corresponding to the directions of the fingers of
respectively the right or left hand when the thumb is pointing in the direction of propagation
of the wave (i.e., the positive z-axis). However, the two observation methods i) and ii) give
different answers to whether the rotation direction is right-hand or left-hand. Observation
method i) is always chosen for the definition by convention (Fig. 2.25).

We thus simply define right-hand circular (RHC) polarization for waves propagating in the
z-direction by the unit vector

ĉo = (x̂− jŷ)/
√

2 , (2.21)

which means that the y-component has a phase factor −j = e−jπ/2 compared to the x-
component. In other words, the y-component of the field is delayed by t0 = T/4 (i.e., a
quarter of a period) compared to the x-component. Let us study in more detail a RHC-
polarized plane wave of the form

E = ĉo e−jkz = (x̂− jŷ)e−jkz/
√

2 . (2.22)

The time-varying field is

~E(z, t) = <{Eejωt} = Ex(z, t)x̂ + Ey(z, t)ŷ , (2.23)

with

Ex(z, t) = <{E · x̂ejωt} = cos(ωt− kz)/
√

2 ,

Ey(z, t) = <{E · ŷejωt} = cos
(
ωt− π

2
− kz

)
/
√

2

= cos

(
ω

(
t− T

4

)
− kz

)
/
√

2

= cos

(
ωt− k

(
z +

λ

4

))
/
√

2 .

(2.24)

The above ~E(z, t) for RHC circular polarization is plotted in Fig. 2.2 as a function of z for
t = 0 and as a function of t for z = 0. ~E(z, t) for linear x-polarization is also plotted. We see
that the plot shows a right-hand circular spiral when ~E(z, t) is plotted as a function of t. The
cross-polar unit vector which corresponds to ĉo in (2.21) is6

x̂p = (x̂ + jŷ)/
√

2 (2.25)

When the propagating E-field has the form in (2.11), we find the complex amplitudes of its
co- and cross-polar fields to be

Eco = E · ĉo∗ = (Ex + jEy)/
√

2 , (2.26)

5 There exist Matlab code for all figures of which the caption start with ?.
6 We could also have chosen x̂p = (ŷ − jx̂)/

√
2 or (2.25) multiplied with any complex constant of unit

amplitude.
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Exp = E · x̂p∗ = (Ex − jEy)/
√

2 . (2.27)

The complex values can be expressed in terms of their amplitudes and phases, according to

Ex = |Ex|ejφx , Ey = |Ey|ejφy . (2.28)

We see that Exp = 0 if |Ex| = |Ey| and φy − φx = −π/2. This corresponds to the condition
described in the next paragraph.

The RHC circularly polarized wave can be excited by two orthogonal, but otherwise equal,
linearly polarized antennas. Assume that the two antennas are x-and y-polarized, respec-
tively. Then, the 90◦ delay of the signal on the y-polarized antenna relative to the x-polarized
one can be obtained by connecting the x- and y-polarized antennas to the in-phase (0◦) and
quadrature (−90◦) outputs of a 3 dB hybrid power divider, respectively. Alternatively, we
can feed the y-polarized antenna through a cable which is ∆z = λc/4 longer than the ca-
ble feeding the x-polarized antenna where, λc is the wavelength in the cable. We also can
generate circular polarization by using helical antennas and many other ways.

We define left-hand circular (LHC) polarization correspondingly by co and cross-polar unit
vectors of the forms

ĉo = (x̂ + jŷ)/
√

2 , (2.29)

x̂p = (x̂− jŷ)/
√

2 . (2.30)

Generally, we may define a desired elliptical polarization by the unit vectors

ĉo = [x̂ +Aej∆φŷ]/
√

1 +A2 , (2.31)

x̂p = [−Ae−j∆φx̂ + ŷ]/
√

1 +A2 , (2.32)

where A and ∆φ are real constants. However, the elliptical polarization has no practical
interest as a desired polarization, although in practice linearly and circularly polarized fields
are often elliptically polarized as the cross-polarization is never identically zero. An elliptical
polarization is obtained by adding two orthogonal circular polarizations with different am-
plitudes, or by adding two orthogonal linear polarizations with different phases. Adding two
orthogonal circular polarizations with equal amplitude gives linear polarization. Adding two
orthogonal linear polarizations with 90◦ phase difference and equal amplitudes gives circular
polarization.

2.2.3 Axial ratio and cross-polarization

The polarization ellipse is the curve which the peak of the E-field describes when the time
varies in a plane normal to the propagation direction of the wave. The ellipse can be charac-
terized by its maximum and minimum field values, |Emax| and |Emin|, respectively. The Axial
Ratio (AR) of the ellipse is defined by

(AR)dB = 10 log

∣∣∣∣Emax

Emin

∣∣∣∣2 dB . (2.33)

For a desired circular polarization the AR in dB and the amplitudes of the co- and cross-polar
fields are related by

(AR)dB = 10 log

[ |Eco|+ |Exp|
|Eco| − |Exp|

]2

dB . (2.34)
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For an ideally circularly polarized wave the AR is unity (0 dB). The axial ratio is infinity for
an ideally linearly polarized wave.

The cross-polar level can be quantified in four different ways: by the cross-polar decoupling
(also called the cross-polar isolation)

(XPD)dB = 10 log

∣∣∣∣Eco

Exp

∣∣∣∣2 dB , (2.35)

by the relative cross-polar level

(XP)dB = 10 log

∣∣∣∣Exp

Eco

∣∣∣∣2 dB , (2.36)

by the polarization efficiency which is the ratio in dB between the co-polar power density
and the total power density of the wave, i.e.,

(epol)dB = 10 log

( |Eco|2
|Eco|2 + |Exp|2

)
dB . (2.37)

2.2.4 Example: Amplitude and phase errors in circular polarization
excitations

Circular polarization is often generated by using two linearly polarized antennas. In this
case, it is important to know how accurate the two linear excitations need to be relative to
each other. We will study this.

Consider an x-polarized plane wave of unit amplitude and a y-polarized plane wave of ampli-
tude jAej∆φ, both propagating in the positive z-direction. The combined wave has left-hand
circular (LHC) polarization when A = 1 and ∆φ = 0. Find the requirements to the maximum
acceptable deviations of A (in dB) or ∆φ (in degrees) from these values which give a cross-
polar decoupling better than 25 dB. What is the polarization efficiency and axial ratio in this
case?

SOLUTION:

The vector amplitude of the combined z-propagating wave is (see (2.8))

Et = Exx̂ + Eyŷ = x̂ + jAej∆φŷ ,

with A = 10(A)dB/20. The co-polar LHC component is found by using (2.14) with (2.29) for
the co-polar unit vector:

Eco = Et · ĉo∗ = (x̂ + jAej∆φŷ) · (x̂− jŷ)/
√

2 = (1 +Aej∆φ)/
√

2 .

The cross-polar RHC component is correspondingly found from (2.14) using (2.30) for the
cross-polar unit vector:

Exp = Et · x̂p∗ = (x̂ + jAej∆φŷ) · (x̂ + jŷ)/
√

2 = (1−Aej∆φ)/
√

2 .
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Figure 2.3: ?Amplitude error (left scale) and phase error (right scale) of circular polarization
excitations as a function of resulting relative cross-polar level.

The resulting relative cross-polar level is∣∣∣∣Exp

Eco

∣∣∣∣ =

∣∣∣∣1−Aej∆φ1 +Aej∆φ

∣∣∣∣ .
We can now evaluate this for different (A)dB and ∆φ in order to find the requirements on (A)dB

and ∆φ. We have done this and plotted the results in Fig. 2.3?.The polarization efficiency
as obtained by (2.37) is plotted in Fig. 2.4?.

In addition, let us use a more elegant approach by deriving approximate expressions valid for
small (A)dB and ∆φ. These will be useful for rapid calculations by hand. We first consider
the case that there are only amplitude errors (i.e., ∆φ = 0). Then, by using one of the series
expansions in Appendix B, we get

A = 10(A)dB/20 ≈ (1 + 0.115(A)dB) for (A)dB << 4.3 dB .

This gives from (2.36)

XP =

∣∣∣∣Exp

Eco

∣∣∣∣ ≈ ∣∣∣∣ −0.115(A)dB

2 + 0.115(A)dB

∣∣∣∣ ≈ 0.0575|(A)dB| ,

(XP)dB ≈ −25 + 20 log |(A)dB| dB .

Thus, the cross-polarization is −25 dB when the amplitude error is (A)dB = 1 dB. The axial
ratio is found by using (2.34) with Emax = 1 and Emin = A or opposite. Thus,

(AR)dB = |(A)dB| .

Let us now consider the case that (A)dB = 0 dB and ∆φ� 180◦, i.e., only phase errors. Then,
we get by using an expansion formula in Appendix B

Aej∆φ = ej∆φ = 1 + j(∆φ)rad = 1 + j
π

180◦
(∆φ)◦ .



2.2. PLANE WAVES AND THEIR POLARIZATION 30

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

P
o

la
ri
z
a

ti
o

n
 e

ff
ic

ie
n

c
y
 (

d
B

)

-40 -30 -20 -10 0

Relative crosspolar level (dB)

Figure 2.4: ?Polarization efficiency as a function of relative cross-polar level.

Further, using (2.36)

XP =

∣∣∣∣Exp

Eco

∣∣∣∣ =

∣∣∣∣ −j(∆φ)rad

2 + j(∆φ)rad

∣∣∣∣ =
π

360
(∆φ)◦ ,

(XP)dB = 20 logXP = −41 + 20 log |(∆φ)◦| dB .

Thus, when the phase error is 1◦, the relative cross-polarization is −41 dB. The axial ratio is
found by using (2.34). We get

(AR)dB = 20 log

∣∣∣∣1 + |Exp/Eco|
1− |Exp/Eco|

∣∣∣∣ dB ≈ 20 log
[
1 +

π

180◦
|(∆φ)|◦

]
dB

≈ 20(log e)
π

180◦
(∆φ)◦ dB = |(∆φ)◦|/6.3 dB ,

where we have made use of another series expansion from Appendix B. Thus, the axial ratio
in dB due to phase errors can readily be calculated by dividing the phase error (in degrees)
by 6.3.

For low cross-polarizations, the polarization efficiency in (2.37) becomes,

(epol)dB = 10 log

(
1−

∣∣∣∣Exp

Eco

∣∣∣∣2
)

dB = −4.3|Exp/Eco|2 dB ,

by using also an expansion formula from Appendix B. We see that common relative cross-
polar power levels below 0.01 (i.e., −20 dB) cause very low losses. Studying the above formulas,
we see that our numerical example gives the following answer. In order to get the cross-polar
decoupling better than 25 dB (i.e., the cross-polar level lower than −25 dB), we need

|(A)dB| < 1 dB when ∆φ = 0 ,

(∆φ)◦ < 6.3◦ when (A)dB = 0 .

The axial ratio is 1 dB in both cases, and the polarization loss is 0.014 dB. The results can
also be read out of Fig. 2.3. The polarization efficiency is plotted in Fig. 2.4 as a function of
the relative cross-polar level.
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Figure 2.5: Illustration of four-port polarizer (a) and drawing of septum polarizer (b) with rectan-
gular and square waveguide ports.

2.2.5 Polarizer for generating circular polarization

In order to generate dual circular polarization from two linear ones we need a polarizer. This
can be realized in many different ways. In most cases we can represent it as a passive circuit
component with four ports (Fig. 2.5), which for the ideal lossless case is described by the
scattering matrix

[Sij ] =
1√
2


0 0 1 −j
0 0 −j 1
1 −j 0 0
−j 1 0 0

 ,

where Sij = V −i /V
+
j , with V −i is the amplitude of the wave leaving port i, and V +

j is the
amplitude of the wave exciting port j, both of them for the case when V +

k = 0 for k 6= j.

The polarizer works as follows: We connect ports 3 and 4 to two similar and lossless but
orthogonally x- and y-polarized antennas which are impedance matched to the characteristic
impedance of these ports. Then, from this excitation, there comes a propagating wave of the
form

Ee−jkz = (V −
3

x̂ + V −
4

ŷ)e−jkz .

If we excite port 1 with unit amplitude, i.e., V +
1

= 1, the signal out of port 3 has amplitude
V −

3
= S31V

+
1

= 1/
√

2 and that out of port 4 has V −
4

= S41V
+

1
= −j/

√
2. Thus, the combined

field has the form
E1 = S31 x̂ + S41 ŷ = (x̂− jŷ)/

√
2 ,

which represents RHC polarization according to (2.21). When port 2 is excited, we get
correspondingly

E2 = S32 x̂ + S42 ŷ = (−jx̂ + ŷ)/
√

2 = (−j)(x̂ + jŷ)/
√

2 ,

which represents LHC polarization according to (2.29).

A polarizer, can for, instance be realized as a microwave circuit with four coaxial ports. It can
also be realized with circular waveguide input and output. Then, each of the two orthogonal
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linear polarizations in the single mechanical input of the circular waveguide represent ports 1
and 2, respectively. The single output circular waveguide contains both the two orthogonal
linearly polarized output ports 3 and 4. Thus, in this case both input circuit ports 1 and 2
are present in the same physical circular input waveguide port, and similarly both output
circuit ports 3 and 4 are present in the same physical output circular waveguide port. The
septum polarizer is a very compact polarizer. This is realized with two physically separated
rectangular waveguide input ports 1 and 2 (see Fig. 2.5b), and a physical quadratic or cir-
cular output waveguide containing both the circuit ports 3 and 4. The quadratic or circular
waveguide output is very convenient, in particular for feeding circular waveguide horn anten-
nas with dual circular polarization. The physically separate input ports are convenient as no
extra orthomode transducer is needed.

2.2.6 Example: Mismatch in polarizer

a) Assume that the x- and y-polarized antennas on ports 3 and 4 in Fig. 2.5 have 75 Ω input
impedances, whereas the polarizer ports have 50 Ω impedances. Determine the relative cross-
polar level and the relative radiated power when we excite port 1 with a unit wave and port 2
is terminated with 50 Ω.

b) Repeat the calculations for the case when port 2 is short-circuited.

SOLUTION:

a) When ports 3 and 4 are terminated by 75 Ω, the reflection coefficients are

r =
V +

3

V −
3

=
V +

4

V −
4

=
75− 50

75 + 50
= 0.2 (i.e., −14 dB) .

If port 1 is excited, the waves leaving ports 3 and 4 are S31 = 1/
√

2 and S41 = −j/
√

2

respectively. These are reflected and create output signals on ports 1 and 2 according to

V −
1

= rS13(1/
√

2) + rS14(−j/
√

2) = (r/2)− (r/2) = 0 ,

V −
2

= rS
23

(1/
√

2) + rS
24

(−j/
√

2) = −j(r/2)− j(r/2) = −jr .

Thus, equal reflections on ports 3 and 4 cause a wave out of port 2 (i.e., coupling to the
orthogonal polarization). If port 2 is ideally impedance matched, V +

2
= 0 and there is no

reflection back into the polarizer. Therefore, the wave amplitudes on ports 3 and 4 do not
change, so the polarization is ideally RHC as in a) with zero cross-polar level. The total
radiated power, which is the mismatch factor of the polarizer circuit, becomes one minus the
relative power lost in the dummy load at port 2:

erad = 1− |r|2 = 0.96 (i.e., −0.18 dB) .

b) In this case we still have 75 Ω on ports 3 and 4, but we now consider the case when
port 2 is short-circuited. Then, V +

2
= −V −

2
= jr, which gives a new output on ports 3 and 4

providing an E-field of the form

E2 = V +
2
S32 x̂ + V +

2
S42 ŷ = (r/

√
2)(x̂ + jŷ) ,
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which is LHC and therefore cross-polar. This is again reflected by the 75 Ω load, giving rise to
multiple reflections in the polarizer, but these do not destroy the cross-polar level determined
already by E2 . The relative cross-polar level becomes

(XP)dB = 20 log

(∣∣∣∣E2

E1

∣∣∣∣) = 20 log |r| = −14 dB .

And from (2.34) the axial ratio becomes

(AR)dB = 20 log

∣∣∣∣1 + |r|
1− |r|

∣∣∣∣ = 20 log

∣∣∣∣1.20.8

∣∣∣∣ = 3.5 dB .

Therefore, mismatches after a polarizer circuit will either cause losses or create cross-polariza-
tion or both together.

2.3 Radiation fields

This section generally describes the radiation fields of antennas and how we characterize
them. When we observe the radiated fields at a point r at a very large distance r from the
antenna, the field variations with distance and direction r̂ = r/r from the antenna become
separable according to E(r) = G(r̂)e−jkr/r. Therefore we need only to measure the direction
dependence G(r̂) of the amplitude and phase of the field in order to reconstruct it at any point
far away from the antenna. This property is of course very useful, and it is of importance to
know the distance outside which we can use it safely.

Moreover, there exist other theoretical cases for which the r dependence is separable from
the direction dependence, and for which the r dependence is different from e−jkr/r. For
example, in two-dimensional (2D) field problems the field varies as e−jkr/

√
r at large distances.

However, ideal 2D antennas are infinitely long and hence not realizable, so we will in real life
always observe the e−jkr/r dependence for large r. Still, some long antennas and scatterers
may be treated approximately as 2D structures in order to facilitate the analysis within
certain distances from them, but we will not consider such cases in this book.

Note that the above e−jkr/r dependence is valid only when the antenna is located in free
space (i.e., in vacuum). In reality there will be surrounding structures and the atmosphere
that affects the radiation field. Still, the theoretical free-space environment is very useful in
characterizing antennas. The effect of neighboring structures is often negligible if they are
not located in the direction of the main beam. Thus, the vacuum is a good model for the
atmosphere unless there is heavy rain, fog, smoke or atmospheric disturbances.

2.3.1 Field regions

The radiation field is most often interpreted to be the field in the far-field region at which
the r and r̂ dependences of the fields are separable. This appears gradually when r increases,
but it has appeared to a very high accuracy when 7

r ≥ 2D2/λ . (2.38)

7 This relation will be derived in Section 4.2.
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Here D is the largest diameter of the antenna, or more precisely the diameter of the smallest
sphere that contains all structural parts of the antenna. Note that this sometimes may
include a ground plane on which the antenna is located. The above condition is referred
to as the far-field (or Fraunhofer) condition or criterion. The condition in (2.38) is not
unique. Sometimes r ≥ (D2/λ) is sufficient. It depends strongly on the antenna type and the
environment. Also, sometimes D in (2.38) is replaced by an effective diameter. Therefore, in
practical work it is important to state clearly the far-field condition being used. In theoretical
work, we may simply assume that r →∞ in the far-field.

The region for which r is smaller than D2/λ or 2D2/λ is called the near-field. The near-field
is also a radiation field. Indeed, the radiating power is dominating everywhere in the near-
field except very close to the antenna, where reactive oscillating and nonradiating power may
dominate. The extent of this inner reactive near-field region cannot be defined in general
because it depends strongly on the antenna geometry. However, often the reactive effects
vanish at 2-3 wavelengths away from the antenna. The outer and largest part of the near-
field region is correspondingly called the radiating near-field . These different field regions
are illustrated in Fig. 2.6.

We will only discuss far-fields in this book, except when studying the Gaussian beam in
Section 5.7.

2.3.2 ”Radiation fields” of receiving antennas

Most of this book is devoted to electromagnetic field analysis of antennas in order to determine
their radiation patterns and equivalent circuits. All this analysis is done by considering
radiating antennas (i.e., antennas in transmitting mode). In practice, most antennas are used
both for transmission and reception, so the receiving mode analysis is equally important as
the transmitting mode analysis. Despite this, the analysis methods and their terminology are
closely linked to those used for the transmitting antenna. This can be justified by the fact
that wave propagation satisfies reciprocity. There is an exception related to waves in some
magnetic materials, but such materials are traditionally only used in nonradiating waveguide
components and not in the radiating parts of an antenna.
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Reciprocity8, is a general relation between sources and resultant fields, or between the related
currents and voltages. Reciprocity states that if a current source which is present at the port
of an antenna a causes a certain voltage measured at the port of another antenna b (which
may be located far away from antenna a), then, if we instead excite antenna b with the same
current as antenna a had, we will measure the same voltage at the port of antenna a which
we first measured at antenna b.

Physically, this means that the antenna structures and the environments between the two
antennas affect the amplitude and phase of the transferred fields between the two ports in
the same way independent of which direction the wave propagates. This is true independent
of which antenna is transmitting and which is receiving. Therefore, it is sufficient only to
analyze the antennas in transmitting mode. The performance on reception is reciprocal.
Some papers (mainly old ones) calculate the properties of antennas when they operate in
the receiving mode, but today the radiation analysis dominates because it is much simpler.
Also it is far more easily extended from simple approximate solutions to more accurate and
complicated numerical solutions. It is not at all recommended to try to perform field analysis
of antennas in the receiving mode. Once the equivalent circuits of the antenna have been
determined, an antenna can easily be analyzed as a part of the system, even in the receiving
mode, by using network and circuit theory9.

2.3.3 Far-field function and radiation intensity

From the discussion at the beginning of Section 2.3 we may write the far-field at a point r
generally as

E(r) =
1

r
e−jkrG(r̂) , (2.39)

where 1/r is the divergence factor, e−jkr is the phase factor and G(r̂) is the complex far-field
function (we can also call it the radiation field function), and where

r = xx̂ + yŷ + zẑ , r =
√
x2 + y2 + z2 and r̂ = r/r . (2.40)

The radiation field is most conveniently represented in a spherical coordinate system with
origin somewhere inside the antenna structure (Fig. 2.7). This gives

r̂ = sin θ cosϕx̂ + sin θ sinϕŷ + cos θẑ , (2.41)

where θ is the polar angle and ϕ is the azimuth angle. Therefore, we may also express the
far-field as

E(r, θ, ϕ) =
1

r
e−jkrG(θ, ϕ) . (2.42)

Eq. (2.39) and (2.42) express the E-field both a) as a spherical wave originating from r = 0,
and, b) locally for large r as a plane wave. In this book we use both the notations in (2.39)
and (2.42). We will express the fields and far-field functions henceforth in terms of the unit
vector r̂ or in terms of (θ, ϕ). That is, G(r̂) = G(θ, ϕ).

The corresponding H-field is

H(r, θ, ϕ) =
1

η
r̂×E(r, θ, ϕ) , (2.43)

8 Reciprocity will be studied further in Section 4.5.
9 For more information see Section 2.6.1
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Figure 2.7: The spherical coordinate system for representation of radiation fields.

which is the same relation that was used for the plane wave in (2.9). The power density
vector Wave is found by using (2.7):

Wave =
1

2
<{E×H∗} =

1

2

1

ηr2
|G(θ, ϕ)|2r̂ . (2.44)

For antennas, it is common to introduce the radiation intensity U(θ, ϕ), which is the radiated
power per unit solid angle. This becomes

U(θ, ϕ) = r2(Wav · r̂) =
1

2η
|G(θ, ϕ)|2

=
1

2η

[
|Gco(θ, ϕ)|2 + |Gxp(θ, ϕ)|2

]
,

(2.45)

where the co- and cross-polar far-field functions Gco(θ, ϕ) and Gxp(θ, ϕ) are found by using
co-and cross-polar unit vectors ĉo(θ, ϕ) and x̂p(θ, ϕ) that are orthogonal to r̂, according to

Gco(θ, ϕ) = G(θ, ϕ) · ĉo∗(θ, ϕ) , (2.46)

Gxp(θ, ϕ) = G(θ, ϕ) · x̂p∗(θ, ϕ) . (2.47)
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The unit vectors ĉo(θ, ϕ) and x̂p(θ, ϕ) can be defined for wave propagation in a direction
r̂ = r̂(θ, ϕ) in the same way as the corresponding unit vectors in Section 2.2 for a plane wave
propagating in a direction ẑ. This will be treated in Section 2.3.5.

2.3.4 Phase reference point and Fraunhofer approximation

The phase of the radiation field is determined by the imaginary part of the exponent of the
phase factor (−kr), plus the phase of the far-field function G(θ, ϕ). The phase of the field at
a given point r must be independent of where we locate the origin of the coordinate system,
from where r is measured, as long as the antenna is located at the same physical position.
Therefore, as the phase factor e−jkr varies rapidly with even small relative changes in r (when
r is large), the phase of the far-field function will change rapidly as well. From this it is clear
that the far-field function has a phase reference point , which actually is the point from which
r is measured. This is normally the center of the coordinate system.

Let us now see how the far-field function changes when the phase reference point is moved
from the origin of the coordinate system to a point r0 = x0 x̂+y0 ŷ+z0 ẑ. The E-field E(r, θ, ϕ)

at a point r = R + r0 must be independent of the phase reference point for a given antenna.
Therefore,

E(r, θ, ϕ) = E(R, θ, ϕ) , (2.48)

where E(R, θ, ϕ) is the E-field expressed in the translated coordinate system with origin at
r0 . By using (2.42) on both sides of (2.48) we get

1

r
e−jkrG(θ, ϕ) =

1

R
e−jkRG′(θ, ϕ) , (2.49)

where R = |r − r0 |. Let us now use the following two approximations, which are commonly
known as the Fraunhofer approximations10, and substitute

1

r
≈ 1

R
and r ≈ R+ r0 · r̂ , (2.50)

in the amplitude and phase expressions, respectively. These approximations are easily un-
derstood by studying Fig. 2.8. They are according to (2.38) valid when R > 2r2

0
/λ. Using

them, the far-field function G′(θ, ϕ) with the new phase reference point r
0

becomes

G′(θ, ϕ) = G(θ, ϕ)e−jk(r−R) = G(θ, ϕ)e−jkr0
·r̂ , (2.51)

which is a simple phase transformation of the original far-field function G(θ, ϕ).

If instead of moving the phase reference point, we move the antenna itself from the origin
to a point r

A
in the coordinate system, then the far-field function of the antenna in its new

position becomes
G
A

(θ, ϕ) = G(θ, ϕ)ejkrA ·r̂ , (2.52)

when both GA(θ, ϕ) and G(θ, ϕ) have their phase reference points in the origin of the coordi-
nate system. This follows from similar arguments as those which were used to derive (2.51),
using rA = −r0 . When the coordinate system is moved, the field is the same in a given fixed
point relative to the antenna. In contrast, given a coordinate system, when the antenna is
moved over a small distance relative to a fixed observation point, the field at the observation
point changes only by a phase factor. Recall that the latter holds only if r > 2r2

A
/λ and

r > 2D2/λ.

10 See Section 4.2.2.
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Figure 2.8: Moving the phase reference point from the origin to a point r0 .

2.3.5 Polarization of radiation fields

The far-field is locally a plane wave, so we may use the formulas in Section 2.2 to find the
co- and cross-polar components of it. To enable this we replace the unit vectors x̂, ŷ and ẑ
by those of a primed coordinate system with ẑ′(θ, ϕ) = r̂, and

x̂′(θ, ϕ) = cosϕθ̂ − sinϕϕ̂ , (2.53)

ŷ′(θ, ϕ) = sinϕθ̂ + cosϕϕ̂ , (2.54)

where θ̂ and ϕ̂ are the unit vectors in the directions of increasing θ and ϕ, respectively.
Then, when θ = 0, we see that ẑ′ = r̂ = ẑ, x̂′(0, ϕ) = x̂, and ŷ′(0, ϕ) = ŷ. Based on Eq. (2.19)
and (2.20), in this new coordinate system we can define an arbitrary linear polarization by
the co- and cross-polar unit vectors

ĉo(θ, ϕ) = cos ξx̂′(θ, ϕ) + sin ξŷ′(θ, ϕ) ,

x̂p(θ, ϕ) = sin ξx̂′(θ, ϕ)− cos ξŷ′(θ, ϕ) ,

where ξ = 0 (ξ = π/2) corresponds to x-polarization (y-polarization) on the axis. We can
substitute (2.53) and (2.54) and express ĉo(θ, ϕ) and x̂p(θ, ϕ) in the alternative forms

ĉo(θ, ϕ) = cos(ϕ− ξ)θ̂ − sin(ϕ− ξ)ϕ̂ ,

x̂p(θ, ϕ) = − sin(ϕ− ξ)θ̂ − cos(ϕ− ξ)ϕ̂ .

These unit vectors define a pure linear polarization for all real choices of the angle ξ. The
polarization performance of the antenna naturally will depend on how we choose ξ (i.e.,
on how we align ĉo and x̂p relative to the radiated field of the antenna). One way to
choose ξ is to optimize it for each direction (θ, ϕ) in such a way that the cross-polar level
is as low as possible. Fortunately, the cross-polar characteristics of an antenna are mainly
of interest inside the main beam. Inside narrow beams, the optimum value of ξ does not
vary significantly. Therefore, for all pencil-beam antennas we may adjust ξ (e.g., align the
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Figure 2.9: Coordinate systems for measuring co- and cross-polar fields according to Ludwig’s third
definition using a far-field measurement range. Note: The antenna is shown for the case when ŷ = n̂,
which means that we measure the radiation pattern in the ϕ = 0◦ plane.

antenna) for minimum cross-polarization on the axis and use this value of ξ inside the whole
main beam.

Using this approach means that a y-polarized antenna is characterized by co- and cross-polar
unit vectors of the respective forms

ĉo(θ, ϕ) = ŷ′(θ, ϕ) = sinϕθ̂ + cosϕϕ̂ , (2.55)

x̂p(θ, ϕ) = x̂′(θ, ϕ) = cosϕθ̂ − sinϕϕ̂ . (2.56)

Similar definitions can be used for linear x-polarization. The definition given in (2.55) - (2.56)
is often referred to as Ludwig’s third definition [2], which applies to pencil-beam antennas. It
also applies to feeds used in reflector antennas, even when they have broad beams.11

For RHC polarization we get

ĉo(θ, ϕ) = [x̂′(θ, ϕ)− jŷ′(θ, ϕ)]/
√

2 = e−jϕ[θ̂ − jϕ̂]/
√

2 , (2.57)

x̂p(θ, ϕ) = [x̂′(θ, ϕ) + jŷ′(θ, ϕ)]/
√

2 = ejϕ[θ̂ + jϕ̂]/
√

2 , (2.58)

and correspondingly for LHC polarization

ĉo(θ, ϕ) = [x̂′(θ, ϕ) + jŷ′(θ, ϕ)]/
√

2 = ejϕ[θ̂ + jϕ̂]/
√

2 , (2.59)

11 See Section 9.2.2 and Section 9.3.1.
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x̂p(θ, ϕ) = [x̂′(θ, ϕ)− jŷ′(θ, ϕ)]/
√

2 = e−jϕ[θ̂ − jϕ̂]/
√

2 . (2.60)

The co- and cross-polar field components for linear polarization in (2.55) and (2.56) are easily
measured by pointing the antenna horizontally and rotating it around the vertical axis. This
can be done in most far-field measurement ranges, such as the one shown in Fig. 2.9. This
consists of a tower with a fixed antenna at one end, and at the other end an Antenna Under
Test (AUT ) which is located on a table being rotated around a vertical axis n̂. Assume
that the coordinate system of the antenna under test is located with the z-axis pointing
in the same horizontal direction as the antenna radiates. The y-axis is aligned with the
linear polarization of the antenna. Then, when we rotate the antenna around the vertical
axis n̂, we observe the radiation field of the AUT at the port of the fixed antenna in the
tower. This is recorded as a function of θ for a fixed ϕ. In fact, the ϕ-plane is determined
from tanϕ = (n̂ · x̂)/(n̂ · ŷ). We measure perpendicular (HOR) polarization when the E-field
direction ŷ is horizontal (i.e., n̂ · ŷ = 0), corresponding to the plane ϕ = 90◦. We measure
parallel (VER) polarization when the E-field is vertical (i.e., n̂ · ŷ = 1), corresponding to the
plane ϕ = 0◦ as shown in Fig. 2.9. The polarization of the antenna in the tower must be
purely linear. Furthermore, when θ = 0, we must align it with ŷ for measuring the co-polar
component, and with x̂ for measuring the cross-polar component. These two orientations of
the polarization of the antenna in the tower will give the directions ŷ′(θ, ϕ) and x̂′(θ, ϕ) in
the coordinate system of the AUT when this is rotated an angle θ around the vertical n̂ axis.
Therefore, we measure the co- and cross-polar field components of the antenna under test as
they are defined by the unit vectors in (2.55) and (2.56).

2.3.6 Co- and cross-polar radiation patterns

The co-polar radiation pattern is a graphical representation of the co-polar far-field function
|Gco(θ, ϕ)|, the cross-polar radiation pattern is a graphical representation of the cross-polar
far-field function |Gxp(θ, ϕ)|, and the co-polar phase pattern is a graphical representation of
the copolar phase function Φco(θ, ϕ) which is defined by the relation

Gco(θ, ϕ) = |Gco(θ, ϕ)|ejΦco(θ,ϕ) .

The cross-polar phase pattern is generally of no interest.

The radiation patterns are normally presented as polar or rectangular plots showing the
value of the far-field function in dB as a function of the polar angle θ for a given constant
azimuth angle (i.e., in a given ϕ-plane as illustrated in Fig. 2.10). Polar plots usually are
only used for antennas with very broad beams. The radiation patterns also can be presented
as contour plots in terms of rectangular uv-coordinates, with u = sin θ cosϕ and v = sin θ sinϕ

along the axes (Fig. 2.11). Such plots are also called uv-plots. Contour plots are mainly
used for narrow beams, for which it is also common to use θx = θ cosϕ and θy = θ sinϕ in
degrees along the axes. For several times in this book, we present universal radiation patterns
in a rectangular plot as a function of a normalized projected direction ka sin θ, where a is
the aperture diameter or width of the antenna (in the plane of the presented pattern) and
k = 2π/λ is the free-space wavenumber. Such patterns are valid for a large range of values of
a.

Radiation patterns are always normalized in some way, e.g., to the level on axis at θ = 0,
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according to

(Gco(θ, ϕ))dB = 10 log

∣∣∣∣Gco(θ, ϕ)

Gco(0, ϕ)

∣∣∣∣2 dB , (2.61)

(Gxp(θ, ϕ))dB = 10 log

∣∣∣∣Gxp(θ, ϕ)

Gco(0, ϕ)

∣∣∣∣2 dB . (2.62)

The best is to normalize the radiation patterns to the isotropic radiation level by using
the total radiated power, as shown in Section 2.3.9. This normalized radiation intensity is
referred to as the directive gain, and the unit is dBi=“dB relative to isotropic level”. The
directive gain patterns are easy to use for design of microwave systems, because the power
density can be calculated directly from the dBi levels and the total radiated power in Watts at
any direction and distance.12 Thus, antenna designers should therefore always present their
radiation patterns in dBi. For this purpose the total radiated power needs to be evaluated
from the measured or calculated radiation fields. This is laborious if the far-field function has
many sidelobes, but there exist techniques to reduce the effort. These will be discussed in
later chapters. It is also possible to present measured radiation patterns in dBi by comparing
them against the measured gain in dBi of a reference antenna. Gain measurements are
normally done by comparing the on-axis performance by that of a well-calibrated antenna
(e.g., a so-called standard gain horn).

A typical radiation pattern has a main beam, nulls and sidelobes. The pointing direction of
an antenna is the direction of the center of its main beam, often called the boresight direction.
An observation on axis means in the center of the main beam.

2.3.7 Phase center

The phase reference point , which we already have defined, is often mistakenly called the
phase center (and vice versa). However, it is very important to be aware of the difference
between them. The phase center is the location of the center of curvature of the wavefront
of the radiation fields. In other words, the phase center is the phase reference point which
makes the phase of the far-field function constant. Such ideal phase centers seldom can be
determined, so the following definition is more practical: The phase centre is the particular
phase reference point which minimizes the phase variation of the co-polar far-field function
Gco(θ, ϕ) over a given solid angle of interest. The implementation of this definition will be
different for different applications, and we will later in Chapter 8 introduce a specific one
valid for feeds for reflector antennas. A good approximate formula for the location of the
phase center of the co-polar radiation field within an angular region 0 < θ < θmax in a given
ϕ-plane (ϕ = ϕ0) is:

zpc

λ
=

Φco(0, ϕ
0
)− Φco(θmax, ϕ0

)

360◦(1− cos θmax)
, (2.63)

when Φco(θ, ϕ0) is in degrees. This formula is often used in practice and is valid for sym-
metrical patterns; i.e., when Φco(θ, ϕ0) = Φco(−θ, ϕ0) or more stringently when Φco(θ, ϕ0) =

Φco(θ, π + ϕ0). The formula can be derived from (2.51) by requiring that the co-polar phases
of G′(θ, ϕ) shall be equal at θ = 0 and θ = θmax.

12 See Section 2.5.3.
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2.3.8 Total radiated power

The straightforward way to find the total radiated power , Prad, is to evaluate the integral of
the radiation intensity U(θ, ϕ) over the whole far-field sphere:

Prad =
x

far-field sphere

(Wave · r̂)dA =
x

4π

(Wave · r̂)r2 sin θdθdϕ

=
x

4π

U(θ, ϕ) sin θdθdϕ

=
1

2η

x

4π

[|Gco(θ, ϕ)|2 + |Gxp(θ, ϕ)|2] sin θdθdϕ .

(2.64)

In this book we will also use another version of this integral in which we suppress the wave
impedance η and the factor 1/2. This new total power integral P is simply the integral of
the square of the amplitude of the far-field function over the far-field sphere:

P = 2ηPrad =
x

4π

[|Gco(θ, ϕ)|2 + |Gxp(θ, ϕ)|2] sin θdθdϕ . (2.65)

The total power integral is sometimes very difficult to evaluate, in particular for large an-
tennas with a lot of sidelobes. However, for rotationally symmetric antennas we can expand
the ϕ-variation in a Fourier series and solve the ϕ-integral analytically. This simplifies the
integration considerably.13 For large-aperture antennas (e.g., horn antennas), we can re-
place (2.65) by an integral over the limited aperture plane14 over which the power integral
even may be given by a simple analytic expression. Furthermore, in reflector antennas, we
often may perform the power integral over the simple far-field of the feed instead of over the
complex far-field of the total antenna.15

The isotropic radiation level is used as a reference for the directive gain. This is defined by
zero cross-polarization and

Gco(θ, ϕ) = GISO = constant . (2.66)

The power integral in this case is easily evaluated to be

P = |GISO |2
x

4π

sin θdθdϕ = |GISO |24π . (2.67)

2.3.9 Directive gain and directivity

The directive gain and its unit (dBi) was introduced in Section 2.3.6. It is defined by the
normalization of the far-field function to that of an isotropic co-polar radiator which has
the same total radiated power. Thus, the directive gain of the co-polar far-field function is
defined by (using (2.67))

(Dco(θ, ϕ))dBi = 10 log(|Gco(θ, ϕ)|2/|G
ISO
|2) dBi

= 10 log(4π|Gco(θ, ϕ)|2/P ) dBi .
(2.68)

13 See Section 2.4.2.
14 See Section 7.3.3.
15 See Section 9.2.4.
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The value of the directive gain in the center of the main beam is called the directivity . It is
given by

(D
0
)dBi = 10 log(4π|Gco0

|2/P ) dBi ,

where |Gco0
| =

{
|Gco(0, 0)| for centered beams
|Gco(θ, ϕ)|max otherwise

.
(2.69)

where a centered beam means that the desired (but not necessarily the actual) main beam
maximum is on axis at θ = 0◦. This may not necessarily coincide with the actual maximum
of Gco(θ, ϕ). The direction of the desired (or actual) maximum of the main beam is referred
to as the pointing direction of the antenna.

2.3.10 Beamwidth

There are often requirements for the width of the main beam of radiation patterns. The
beamwidth is the angle in degrees between two points where the directive gain has the same
value. This value may either be specified in dBi, or as a level (also called taper) in dB

relative to the directivity. Examples of the latter are the 3 dB beamwidth θ3 dB (also called
the half-power beamwidth) and the 10 dB beamwidth θ10 dB , for which the levels are −3 dB

and −10 dB, respectively, below the main beam maximum. In order to be extra clear, we
may specify whether we mean the half or full beamwidth (i.e., from the center of the main
beam at θ = 0 and out or between the two opposite taper points). In practical work, the
full beamwidth is most used. In this book we will always mean the half beamwidth when we
write θ3 dB and similar, as we always have θ = 0 on axis.

For narrow beam antennas, the directivity can be estimated from the beamwidth.16

2.3.11 Cross-polarization

The directive gain of the cross-polar far-field is defined in the same way as the co-polar
directive gain, by

(Dxp(θ, ϕ))dBi = 10 log(4π|Gxp(θ, ϕ)|2/P ) dBi . (2.70)

Some specific values of the cross-polarization are of interest, such as the relative cross-polar
level on axis:

(XP(0◦))dB = 10 log

∣∣∣∣Gxp(0◦, 0◦)

Gco(0◦, 0◦)

∣∣∣∣2 dB . (2.71)

The corresponding power loss is represented by the polarization efficiency defined in (2.37):

epol =
1

1 + |XP(0◦)|2 =
|Gco(0◦, 0◦)|2

|Gco(0◦, 0◦)|2 + |Gxp(0◦, 0◦)|2 . (2.72)

The relative level of a cross-polar sidelobe showing up at θ = θs in a plane ϕ = ϕs, becomes

(XP(θs))dB = 10 log

∣∣∣∣Gxp(θs, ϕs)

Gco(0◦, 0◦)

∣∣∣∣2 dB . (2.73)

16 See Section 2.4.3.
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The latter level is most conveniently given in dB. Such cross-polar requirements originate
from a desire to avoid interference between two orthogonal communication channels on the
same frequency for polarization diversity transmission (or reception), while using the same
antenna.

2.3.12 Beam efficiency

Sometimes we need to know the relative power within a certain cone angle θ0 around the
pointing direction of the antenna (e.g., within the 20 dB beamwidth of the main beam) of a
pencil-beam antenna. This relative power is referred to as the beam efficiency within θ0 , and
is given by:

(e
BE

)dB = 10 log

[
Pco(θ

0
)

Pco(π) + Pxp(π)

]
dB , (2.74)

where Pco(θ) =

∫ θ

0

∫ 2π

0

|Gco(θ, ϕ)|2 sin θdϕdθ (2.75)

and Pxp(θ) =

∫ θ

0

∫ 2π

0

|Gxp(θ, ϕ)|2 sin θdϕdθ . (2.76)

The total power integral is given in this notation as

P = Pco(π) + Pxp(π) . (2.77)

2.3.13 E- and H-plane patterns

Many antennas have two planes of symmetry. If such antennas are excited for linear polar-
ization in such a way that the E-field on axis lies in one of the symmetry planes (e.g., if
the E-field is oriented in ŷ direction so that ĉo = ŷ for θ = 0◦), then the E-field will lie in
the yz-plane for all θ-directions in the ϕ=90◦ plane. Therefore, this far-field function in the
yz-plane is called the E-plane pattern and it is given by |Gco(θ, 90◦)|. The far-field function
in the xz-plane is therefore called the H-plane pattern, and it is given by |Gco(θ, 0◦)|.

In practice we determine the E- and H-planes as follows. The mechanical structure of the
antenna must have two planes of symmetry through the radiation axis (z-axis). This means
that the antenna can also be rotationally symmetric. We study the exciting waveguide or
electric current probe or dipole. The probe also could be penetrating into the waveguide of a
coax-to- waveguide transition. Then, the E-field on the radiation axis has the same direction
as the E-field in the center of waveguide, or the same as the electric current probe or dipole.
The ϕ-plane, which coincides with this E-field direction on axis, is called the E-plane. The
orthogonal plane coincides with the H-field direction on axis and is called the H-plane.
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2.3.14 Fourier expansion of the radiation field

The ϕ-variation of the far-field function can always be expanded in a Fourier series, because
ϕ is periodic with period 2π:

G(θ, ϕ) = Gco(θ, ϕ)ĉo +Gxp(θ, ϕ)x̂p

=

∞∑
n=0

[COsn(θ) sin(nϕ) + COcn(θ) cos(nϕ)]ĉo+

+

∞∑
n=0

[XPsn(θ) sin(nϕ) + XPcn(θ) cos(nϕ)]x̂p .

(2.78)

Alternatively, we may expand it in this way;

G(θ, ϕ) = Gθ(θ, ϕ)θ̂ +Gϕ(θ, ϕ)ϕ̂

=

∞∑
n=0

[An(θ) sin(nϕ) +Bn(θ) cos(nϕ)]θ̂+

+

∞∑
n=0

[Cn(θ) sin(nϕ)−Dn(θ) cos(nϕ)]ϕ̂ ,

(2.79)

where the minus sign in front of Dn(θ) is chosen of symmetry reasons. If the antenna is
y-polarized with two symmetry planes, the latter Fourier expansion reduces to

G(θ, ϕ) =

∞∑
n=0

An(θ) sin(nϕ)θ̂ +

∞∑
n=0

Cn(θ) sin(nϕ)ϕ̂ . (2.80)

These expansions are convenient, and they can be used to analytically extend the far-field
function to all ϕ-angles if it is known in only a few ϕ- planes.

2.3.15 Example: Phase reference point for asymmetric phase pat-
tern

Consider an antenna with a given measured radiation pattern in the xz-plane. The antenna
and its excitation have two planes of symmetry, so we expect a radiation pattern in the
xz-plane which is symmetric around θ = 0◦. However, the measured phase Φco(θ) shows an
asymmetric pattern (see Fig. 2.12) with a slope at θ = 0◦ which is(

∂Φco(θ)

∂θ

)
θ=0

= a .

The reason for this is that the location of the rotation axis in the measurement setup does not
cross the z-axis of the antenna. Find the x-coordinate of the phase reference point .

SOLUTION:

Let us assume that the location of the phase reference point (i.e., where the rotation axis
cross the xz-plane) is at r0 = x0 x̂ + z0 ẑ. The phase of the co-polar radiation pattern when
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Figure 2.12: Illustration of asymmetric phase pattern (left) and antenna with coordinate system
and location of rotation axis.

referred to r0 is, from (2.51):

Φ′co(θ) = Φco(θ)− kr
0
· r̂ ,

where r̂ is in a direction in the xz-plane (see Appendix C)

r̂ = sin θx̂ + cos θẑ

and Φco(θ) is the phase pattern of the antenna when referred to a point on the symmetry
axis. We get

Φ′co(θ) = Φco(θ)− kx0 sin θ − kz0 cos θ .

Both Φco(θ) and cos θ are symmetric with θ-derivatives equal to zero when θ = 0. There-
fore, (

∂Φ′co(θ)

∂θ

)
θ=0

= −kx
0
(cos θ)θ=0 = −kx

0
.

Thus, if the slope of the phase pattern at θ = 0 is a, the x-coordinate of the phase reference
point is

x0 = −a/k = − a

2π
λ.

2.3.16 Example: Calculation of phase center of a symmetric beam

Consider a quadratic phase pattern of the form

Φco(θ) = Φctr + Φ
0
(θ/θ

0
)2 ,

where θ = ±θ0 are the directions where the phase has changed by Φ0 compared to the phase
at θ = 0. Find the location of the phase center within the angular region 0◦ < θ < 30◦ when
Φ0 = 180◦ and θ0 = 60◦. Also, determine the phase center in the limit when θ approaches
0.
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Biconical BOR0 antenna

excited at feed point

Conical BOR1 horn antenna

excited by TE11 waveguide mode

feed point

Figure 2.13: Examples of BOR0 and BOR1 antennas.

SOLUTION:

We have
∆Φ = Φco(0)− Φco(θmax) = −180◦(30◦/60◦)2 = −45◦ .

The location of the phase center is found by using (2.63):

zpc =
−λ · 45◦

360◦(1− cos θmax)
= −0.93λ ,

which means that the phase center is 0.93λ behind the phase reference point. The phase
center at θ = 0 can be found from the same formula by letting θmax → 0. This gives

∆Φ(θmax) = Φco(0)− Φco(θmax) = −Φ
0
(θmax/θ0

)2

and

zpc = lim
θmax→0

( −Φ0(θmax/θ0)2

360◦(1− cos θmax)

)
λ

= − Φ
0
λ

180◦θ2
0

(
180◦

π

)2

= −
(

180◦

π · 60◦

)2

λ = −0.91λ ,

which is obtained by using the expansion cos θ = 1 − (θ2/2), which is valid for small θ in
radians. Thus, the phase center for the direction θ = 0 is located 0.91λ behind the phase
reference point.

2.4 Rotationally symmetric antennas (BOR)

The mechanical structures of several antennas are rotationally symmetric, or, in other words,
they are bodies of revolution (BOR), such as circular horn antennas. Still, BOR antennas do
not necessarily have rotationally symmetric far-field functions. BOR antennas can be divided
in two basic types, depending on how they are excited (Fig. 2.13).

2.4.1 BOR0 antennas with rotationally symmetric radiation fields

In order to obtain a rotationally symmetric radiation field, the BOR antenna structure must
be excited by a rotationally symmetric source, such as an electric or magnetic dipole aligned
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along the symmetry axis. In the former case, the far-field function will be of the form,
see (2.79),

Ge(θ, ϕ) = B
0
(θ)θ̂ (2.81)

and in the latter
Gm(θ, ϕ) = C

0
(θ)ϕ̂ (2.82)

corresponding to entirely θ-directed and ϕ-directed E-fields, respectively. We will refer to such
antennas as BOR0 antennas. This is because the antenna structure is a body of revolution
(BOR) and that the radiation field is of zero order variation in ϕ-direction according to the
expansion in (2.79).

2.4.2 BOR1 antennas

If a BOR antenna is excited by a short transverse current on the symmetry axis, the radiation
field will only contain the n = 1 terms of the expansion in (2.79). The current source can
be an incremental electric current17 located on the z-axis and directed along ŷ, where the
far-field function is

Gy(θ, ϕ) = G
E

(θ) sinϕθ̂ +G
H

(θ) cosϕϕ̂ , (2.83)

where GE (θ) = A1(θ) and GH (θ) = C1(θ) are seen to be the complex far-field functions in the
E- and H-planes, respectively. It is important to note that always GE (0) = GH (0), because
the E- and H-plane patterns coincide for θ = 0. We will refer to BOR antennas of this kind as
y-polarized BOR1 antennas, because the far-field function has only the first order variation
in ϕ according to (2.80). In practice the equation in (2.83) is valid also when the exciting
dipole has finite length (up to a half wavelength) provided it is centered on the symmetry
z-axis of the structure. All rotationally symmetric antennas excited by TE11 (or similar)
circular waveguide modes are also BOR1 antennas (see Fig. 2.13, right side).

The BOR1 form in (2.83) is important because it allows us to construct the whole far-field
function from the E- and H-plane patterns only. By using Ludwig’s third definition in (2.55)
and (2.56), the co- and cross-polar far-field functions resulting from the BOR1 form become

Gco(θ, ϕ) = Gy(θ, ϕ) · ĉo∗ = Gco45◦ (θ)−Gxp45◦ (θ) cos 2ϕ , (2.84)

Gxp(θ, ϕ) = Gy(θ, ϕ) · x̂p∗ = Gxp45◦ (θ) sin 2ϕ , (2.85)

where

Gco45◦ (θ) =
1

2
[G

E
(θ) +G

H
(θ)] (2.86)

Gxp45◦ (θ) =
1

2
[G

E
(θ)−G

H
(θ)] , (2.87)

are the complex co- and cross-polar far-field functions, respectively, in the ϕ = 45◦-plane. We
refer to (2.84) through (2.87) as the BOR1 relations. Fig. 2.14 shows E- and H-plane and
45◦-plane radiation patterns of an example BOR1 antenna. If we excite the BOR1 antenna
for linear x-polarization, we get

Gx(θ, ϕ) = Gy(θ, ϕ+ π/2) = G
E

(θ) cosϕθ̂ −G
H

(θ) sinϕϕ̂ . (2.88)

17 See Section 4.4.1.
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If we excite it for RHC polarization we get

Gc(θ, ϕ) = (Gx − jGy)/
√

2 = (G
E

(θ)e−jϕθ̂ − jG
H

(θ)e−jϕϕ̂)/
√

2 . (2.89)

The co- and cross-polar far-field functions in this RHC case become (using (2.57) and (2.58))

Gco(θ, ϕ) = Gc · ĉo∗ = Gco45◦ (θ) , (2.90)

Gxp(θ, ϕ) = Gc · x̂p∗ = Gxp45◦ (θ)e−j2ϕ , (2.91)

where Gco45◦ (θ) and Gxp45◦ (θ) are the same as in (2.86) and (2.87). Therefore, the cross-
polarization when the BOR1 antenna is ideally excited for circular polarization is the same
as the cross-polarization in the 45◦-plane when it is ideally excited for linear polarization.
Note that the cross-polarization equals to half of the difference between the complex E- and
H-plane far-field functions. This means that the E- and H-plane far-field functions must
be equal in both amplitude and phase in order to get zero cross-polarization in a BOR1

antenna.

The power integral of the BOR1 antenna has the following two equivalent forms:

P = π

∫ π

0

{
|G

E
(θ)|2 + |G

H
(θ)|2

}
sin θdθ , (2.92)

P = 2π

∫ π

0

{
|Gco45◦ (θ)|2 + |Gxp45◦ (θ)|2

}
sin θdθ . (2.93)

We can conveniently express the latter as the sum of the powers in the co-polar and cross-
polar fields;

P = Pco + Pxp , (2.94)

where for circular polarization

Pco = Pcoc = 2π

∫ π

0

|Gco45◦ (θ)|2 sin θdθ , (2.95)

Pxp = Pxpc = 2π

∫ π

0

|Gxp45◦ (θ)|2 sin θdθ . (2.96)

For linear polarization, the co- and cross-polar parts Pcol and Pxpl of the power integral for
linear polarization are related to Pcoc and Pxpc for circular polarization defined above by
Pco = Pcol = Pcoc + Pxpc/2 and Pxp = Pxpl = Pxpc/2.

2.4.3 Example: Directivity of BOR1 antenna with low sidelobes

It is often convenient to be able to represent an experimental radiation pattern by a simple
analytical expression. There are three common expressions which well approximate main
lobes of pencil-beams. These are e−(θ/θ0 )2 , cosn(θ) and cosn(θ/2), where θ0 and n are chosen
in such a way that the analytical expression resembles the main beam as much as possible
(e.g., in such a way that the 3 dB widths of the experimental and analytical patterns are
equal). The three expressions represent narrow beams equally well, but the cosn(θ/2) pattern
is the best for representing broad beams; therefore, we choose it here. Express the directivity
as a function of the 3 dB beamwidth when the co-polar far-field function is cosn(θ/2) and
there is no cross-polarization.
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Figure 2.14: Examples of E- and H-plane (left) and 45◦-plane co- and cross-polar (right) radiation
patterns of BOR1 antenna.
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SOLUTION:

When the antenna is y-polarized, the approximate far-field function is

G(θ, ϕ) = cosn(θ/2)(sinϕθ̂ + cosϕϕ̂) .

The co-polar far-field function is Gco(θ) = cosn(θ/2). The parameter n can be expressed in
terms of the half 3 dB beamwidth θ3 dB of the experimental pattern by using n20 log(cos(θ3 dB/2))

= −3, i.e.,
n = −3/(20 log(cos(θ

3 dB
/2)) .

The power integral in (2.93) becomes

P = 2π

∫ π

0

cos2n(θ/2) sin θdθ

= 8π

∫ π

0

cos2n+1(θ/2) sin(θ/2)d(θ/2) = 4π/(n+ 1) .

Thus, the directivity is

D
0

=
4π

P
= (n+ 1) ,

which is plotted in dB in Fig. 2.15?. A more handy formula can be obtained by series
expanding the result for small θ

3 dB
(see Appendix B);

log(cos(θ
3 dB

/2)) ≈ log(1− (θ
3 dB

)2/8) ≈ (log e)(θ
3 dB

)2/8 .

This gives:

D
0
≈ 9070/(θ◦

3 dB
)2 and (D

0
)dB ≈ 39.6− 10 log(θ◦

3 dB
)2dB ,

where θ
3 dB

in the latter formulas is in degrees. If the 3 dB half beamwidth in E- and H-planes
are different, we may still use the same formulas but with θ

3 dB
being the square root of the

average of the square of the 3 dB half beamwidths in the two planes.18

2.4.4 Example: Directivity of BOR1 antenna with high far-out side-
lobes

The theoretical cosn(θ/2) pattern has no sidelobe which practical antennas have. Assume
that the antenna has a 3 dB half beamwidth of 5◦. Show how much the directivity is reduced
if the antenna has an increased sidelobe level envelope of SE = −20 dB between θ1 = 60◦ and
θ2 = 80◦.

SOLUTION:

We express the far-field function of the y-polarized antenna as

G(θ, ϕ) = G(θ)(sinϕθ̂ + cosϕϕ̂) ,

with G(θ) =

{
A+ cosn(θ/2) θ1 < θ < θ2

cosn(θ/2) elsewhere
.

18 See also Subsection 2.4.5 and ?.
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By developing the square of G(θ) the power integral gets three terms;

P
1

= 2π

∫ π

0

cos2n(θ/2) sin θdθ = 4π/(n+ 1) ,

P
2

= 2π|A|2
∫ θ

2

θ1

sin θdθ = 2π|A|2[cos θ
1
− cos θ

2
] ,

P
3

= 4π|A|
∫ θ2

θ
1

cosn(θ/2) sin θdθ .

In order to get a useful approximate formula, we will here assume that A� cosn(θ/2) in the
region θ1 < θ < θ2 so that P3 � P2 and can be neglected. Furthermore, we will approximate
P2 by

P2 ≈ 2π|A|2 sin θm∆θ ,

where θm = (θ2 + θ1)/2 is the average value of θ in the high sidelobe region and ∆θ = θ2 − θ1 .
This approximate P2 is valid when θ2 − θ1 is small. The resulting directivity is

D =
4π

P1 + P2

= D0esl ,

where D0 = n+ 1 is the directivity when A = 0, and esl is the directivity reduction due to the
sidelobes, given by

esl =
P

1

P
1

+ P
2

=

(
1 +

P
2

P
1

)−1

;

P
2

P
1

=
1

2
|A|2 sin θm

(
π∆θ

180◦

)
D

0
,

where ∆θ = θ2 − θ1 is in degrees.

In the numerical example we have SE = −20 dB between θ1 = 60◦ and θ2 = 80◦. The best
result of the above formula is obtained if we calculate |A|2 according to

|A|2 = 10(SE−3)/10 .

This can be justified by the fact that A is a sidelobe envelope, so that the sidelobes vary
periodically under a maximum level of |A|2. Taking the square of this amplitude and integrat-
ing corresponds to using a constant average sidelobe level which is 3 dB below the sidelobes’
peaks (i.e., their envelope).

Thus, we reduce SE by 3 dB to the average power density level when calculating |A|2. Fi-
nally,

n = −3/(20 log(cos((5◦)/2))) = 363 , gives D
0

= 364 (i.e., 25.6 dB) ,

|A|2 = 10−(20+3)/10 = 0.005 ,

gives P
2
/P

1
=

1

2
0.005 sin 70◦

(
π · 20◦

180◦

)
364 = 0.30 ,

and esl = (1 + 0.3)−1 = 0.77 (i.e., −1.1 dB) .
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Figure 2.16: ?Reduction in directivity as a function of uniform sidelobe level in dBi. The parameters
of the curves are sin(θm)∆θ in degrees.

Thus, increased sidelobes may have a severe effect on the directivity. In our case the direc-
tivity reduces by 1.1 dB. The results of the above are presented in Fig. 2.16? as a function
of a general sidelobe level in dBi, i.e., as a function of 10 log(|A|2D0). Using the figure for
our example we have a sidelobe envelope level (|A|2D0)dBi = (25.6− 20) dBi = 5.6 dBi and the
figure parameter is sin(70◦) · 20◦ ≈ 17◦, from which we can read a directivity reduction of
about −1.1 dB.

2.4.5 Example: BOR1 antenna with different E- and H-plane pat-
terns

If an antenna has different E- and H-plane patterns we can model it as

G(θ, ϕ) = cosn1 (θ/2) sinϕθ̂ + cosn2 (θ/2) cosϕϕ̂ .

Determine the directivity when the E- and H-plane patterns have 3 dB half-beamwidths of 20◦

and 25◦, respectively. Find the relative cross-polar level at θ = 20◦ in the 45◦-plane.

SOLUTION:

The power integral is from (2.92)

P = P
E

+ P
H

;

P
E

= π

∫ π

0

(cosn1 (θ/2))2 sin θdθ = 2π/(n1 + 1) , P
H

= 2π/(n2 + 1) .
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The directivity is

D
0

= 4π/(P
E

+ P
H

) =
2(n1 + 1)(n2 + 1)

(n
1

+ n
2

+ 2)
.

The numerical values are

n1 = −3/20 log(cos(20/2)) = 22.6 , n2 = 14.4 , D0 = 18.6 (i.e., 12.7 dB) .

The cross-polar pattern in the 45◦-plane is from (2.87)

Gxp45◦ (θ) =
1

2
(cosn1 (θ/2)− cosn2 (θ/2)).

We evaluate it for θ = 20◦;

Gxp45◦ (20◦) =
1

2
(0.7075− 0.8022) = 0.047 .

The relative cross-polar level is from (2.73)

|Gxp45◦ (20◦)/Gco45◦ (0)|2 = (0.047)2 (i.e., −26.5 dB) .

See also ? for Fig. 2.15.

2.4.6 Example: BOR1 antenna with different E- and H-plane phase
patterns

If there are phase differences in E- and H-planes we may extend the cosn(θ/2) feed model
according to

G(θ, ϕ) = cosn(θ/2)[ejk∆(1−cos θ) sinϕθ̂ + e−jk∆(1−cos θ) cosϕϕ̂] .

Determine the locations of the phase centers in E- and H-planes. Determine the directivity
and the cross-polar level at θ = 20◦ in the 45◦-plane when the 3 dB half-beamwidth is 20◦ and
∆ = 2λ.

SOLUTION:

The phase center location ZpcE in E-plane (ϕ = 90◦) and ZpcH H-plane (ϕ = 0◦) can be found
from (2.63). We have

Φ
E

(θ) = k∆(1− cos θ) and Φ
H

(θ) = −k∆(1− cos θ)

which yield

ZpcE =
Φ
E

(0)− Φ
E

(θ)

k(1− cos θ)
= −∆

and ZpcH =
Φ
H

(0)− Φ
H

(θ)

k(1− cos θ)
= ∆ .

Thus, the E-plane phase center is located a distance ∆ behind the phase reference point, and
the H-plane phase center a distance ∆ in front of it.
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The power integral is most easily evaluated by using (2.92), i.e.,

P = P
E

+ P
H

= 2P
E

= 2π

∫ π

0

cos2n(θ/2) sin θdθ = 4π/(n+ 1) .

Thus, the directivity is
D

0
= n+ 1 .

The cross-polar far-field function in the 45◦-plane is from (2.87)

Gxp45◦ (θ) =
1

2
cosn(θ/2)[ejk∆(1−cos θ) − e−jk∆(1−cos θ)]

= cosn(θ/2)j sin(k∆(1− cos θ)) .

The numerical values are

n = −3/20 log(cos(20/2)) = 22.6 ,

D0 = n+ 1 = 23.6 (i.e., 13.7 dBi) ,

|Gxp45◦ (20◦)/Gco45◦ (0)|2 = cos2n(10◦) sin2(k∆(1− cos(20◦)))

= 0.5 sin2(360◦ · 2(1− 0.95))

= 0.24 (i.e., −6.3 dB) .

Thus, phase differences between E- and H-plane patterns cause cross-polarization in the
45◦-plane.?19

2.5 System characteristics of the antenna

From the system’s point of view an antenna can be regarded as a black box with one (or
more) input ports and one or more outputs to free space. The system designer wants to know
the characteristics of the antenna referred to the input port (terminal).

2.5.1 Antenna gain

The directivity was defined from the radiation intensity in the main beam direction and the
total radiated power. The antenna gain (also called realized gain or power gain or simply
the gain) G0 has the same definition, except that the total radiated power is replaced by the
total power delivered to the antenna port. This may be expressed by using the directivity
D0 as

G
0

= eradepolD0
, (2.97)

where erad is the total radiation efficiency and epol is the polarization efficiency . The total
radiation efficiency is the ratio between the radiated power and the power incident on the
antenna port. It can be further factorized in two subefficiencies, according to

erad = ereabs , (2.98)

19 Phase differences between the E- and H-planes are also included in the Matlab code for Fig. 2.15.
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Figure 2.17: Example of lens-corrected horn antenna with input reflection coefficient r, conduction
losses and dielectric losses.

where er = 1− |r|2 is the mismatch factor caused by a reflection coefficient r at the antenna
port, and eabs is the radiation efficiency due to ohmic losses (i.e., absorption) in the con-
ductive and dielectric parts of the antenna structure (Fig. 2.17). The polarization efficiency
epol may or may not be included already in D0 , depending on the on-axis characteristics of
the far field function used to determine D0 . If this had no cross-polarization on axis, we may
use epol to account for an actual system cross-polarization on axis, due to, e.g., a nonideal
polarizer or tolerances. It is given by

epol =

(
E(0◦, 0◦) · ĉo∗

|E(0◦, 0◦)|

)2

. (2.99)

2.5.2 Aperture efficiency and effective area

Several antennas have more or less well defined apertures, through which all or most of the
radiated power propagates. The apertures may be real apertures as in horn antennas or
virtual apertures as in front of reflector antennas or over planar array antennas20. Let us
consider a plane aperture of area A. In Section 7.3.3 we will show that the maximum available
directivity of such an aperture when radiating as an antenna is

Dmax =
4π

λ2
A . (2.100)

receiving antennas are often characterized in terms of their effective aperture instead of their
antenna gain. The effective aperture Ae is defined as the ratio between the total power Pr
received at the antenna port (or absorbed in a load with the required load impedance) and
the power density Wt of the plane wave coming in from the pointing direction of the antenna:

Ae = Pr/Wt . (2.101)

20 For further information see Chapter 5.
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Figure 2.18: A communication system with transmitting (left) and receiving (right) antenna sys-
tems.

Eq. (2.100) can be used to express Ae in terms of the antenna gain, according to

Ae =
λ2

4π
G

0
. (2.102)

Eq. (2.101) and (2.102) are also valid for small antennas of which it is not possible to define
any aperture area, e.g., for short dipoles. We will in Section 5.1.5 derive it from the input
impedance and directivity of a short dipole. The effective aperture can be used to calculate
the received power from an incident plane wave with known power density, as shown in the
next subsection.

Let us now define the aperture efficiency eap. The most common definition is:

eap =
D0

Dmax
(2.103)

and therefore not eap = G0/Gmax = Ae/A which could be expected. Using (2.103) and (2.97)
we can express the antenna gain as

G
0

= eantDmax ; eant = ereabsepoleap , (2.104)

where eant is the total or overall antenna efficiency. This antenna efficiency includes four
different subefficiencies. It is also possible to further factorize the aperture efficiency in
further subefficiencies. We will postpone it to Section 9.4.1.

We see that the definition of the aperture efficiency gives the following relation between the
aperture efficiency and the effective aperture;

Ae = eantA = eradepoleapA . (2.105)

All the subefficiencies in (2.104) and (2.105) are conveniently used in practice to characterize
both receiving and transmitting antennas, due to reciprocity. Almost all of them are, however,
most easily determined and interpretable for transmitting antennas. When we present the
values of all the different efficiencies we should always do it in dB according to (eant)dB =

10 log(eant).

2.5.3 Friis transmission equation and the radar equation

We will now show how the antenna gain and the effective aperture can be used to calculate
the transmission loss between two antennas in a communication system. Let us consider a
transmitting antenna with antenna gain G0t, and a receiving antenna with effective aperture
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Aer. The two antennas are pointing towards each other with coinciding and opposite directed
pointing directions (Fig. 2.18). We assume that a power generator delivers the power Pt to
the port of the transmitting antenna with no reflection. Then, if the antenna is a co-polar
lossless isotropic radiator, the power density in the far-field at the location of the receiving
antenna would be

WISO =
Pt

4πr2
, (2.106)

where r is the spacing between the two antennas. The antenna has an antenna gain G0t

relative to the isotropic radiator, so we get a corresponding increase in the power density:

W
0

=
Pt

4πr2
G0t . (2.107)

The power available from the port of the receiving antenna is now easily determined from
the definition of the effective aperture:

Pr = W
0
Aer = W

0

λ2

4π
G0r = Pt

1

4πr2

λ2

4π
G0tG0r , (2.108)

where G0r is the antenna gain of the receiving antenna. Finally, we get

Pr
Pt

=

(
λ

4πr

)2

G0tG0r , (2.109)

which is commonly referred to as the Friis transmission formula. The (λ/4πr)2 factor is often
called the free space attenuation. The effective aperture and the antenna gain can also be
used to derive the ratio between Pt and Pr of a radar antenna, resulting in the so-called radar
equation:

Pr
Pt

=

(
1

4πr2

)2

G0tAer · (RCS) ,

where RCS is the radar cross section of the object (target) in square meters. The target is
located a distance r away from the antenna, and

Aer =
λ2

4π
G0t ,

since the same antenna is used for both transmit and receive (monostatic case).

2.5.4 Antenna noise temperature and G/T

The actual figure of merit of a communication or radar system is the Signal-to-Noise Ratio
(SNR). SNR is the ratio of the signal power to the noise power. In antennas, the noise power
Pn is most conveniently measured in terms of its equivalent noise temperature T , which is
related to Pn through

Pn = kT∆f , (2.110)

where k is Bolzmann’s constant and ∆f is the bandwidth of the system. T is measured
in Kelvin (K). We do not need to know the value of Bolzmann’s constant. It is sufficient
in antenna analysis to know that the noise power is proportional to the noise temperature.
The relation between the Kelvin and Centigrade (◦C) temperature scales is linear, with
0 K = −273 ◦C and 293 K = 20 ◦C.
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Figure 2.19: Geometry (upper) and system block diagram (lower) for calculation of antenna noise
temperature. T0 is the ambient temperature.

The received signal power is proportional to the antenna gain G0 , so a commonly used figure
of merit for receiving antennas is

G
0
/T = (eantDmax)/Tsys . (2.111)

This ‘G over T’ is always expressed in dB/K (pronounced ‘dB over K’) which is dB relative
to 1/K (‘one over K’). The system noise temperature Tsys can be divided in the receiver noise
Trec and the antenna noise Tant according to

Tsys = Trec + Tant . (2.112)

Note that Trec is a function of the reflection coefficient r, the physical temperature of the
receiver and its noise parameters. The latter Tant contains many contributions. For example,
losses in the atmosphere and the surrounding ground, as well as in conducting or dielectric
parts of the antenna. Also, the sun and other discrete noise sources in the sky may contribute.
The basic noise model of a lossy medium and its physical explanation are as follows. We
consider first a wave propagating through the medium. If this has a power density of unity
when it enters the medium, the power density at the end of the medium is less, i.e., eabs < 1.
The lost power is absorbed, corresponding to excitation of resonances in the molecules or
atoms in the medium, and it is transformed to heat. When no impressed wave is present, the
molecular resonances will keep the same balance between heat (temperature) and microwave
power density. Therefore, the medium always will radiate incoherent microwaves related to
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its absolute temperature
Tabs = (1− eabs)Tmed , (2.113)

where Tmed is the physical temperature of the medium in Kelvin. Tmed will normally be the
ambient temperature T0 , which is used in the illustration in Fig. 2.19. The noise temperature
may vary with frequency, but only if eabs does. Thus, a medium which absorbs all the incident
waves so that eabs = 0 (often referred to as a black body) has an equivalent noise temperature
equal to its physical temperature.

The sky, including the Earth’s atmosphere, contributes to the antenna noise temperature
through its brightness temperature Tb which is due to the physical molecular temperature,
scattering and ohmic losses in the atmosphere. The brightness temperature is the noise seen
by a narrow antenna beam pointing to the sky in a certain direction. Tb is a function of the
elevation pointing direction α

0
of the antenna and the azimuth angle. The azimuth variation

is normally negligible, and the elevation variation can be found tabulated in certain frequency
bands. Such tables sometimes include negative elevation angles, which corresponds to the
case that the main lobe points towards the ground. However, these values will in reality
depend strongly on the conditions of the ground, for instance, its reflection coefficient. The
ground noise contribution from a ground direction can be expressed as

Tg = [1− |γ|2]T0 + |γ|2Tb , (2.114)

where T0 is the ambient temperature, standardized to T0 = 293 K, which corresponds to
20 ◦C, γ is the reflection coefficient of the ground for the given incidence angle, and Tb is the
brightness temperature of the sky in the direction of the ground reflection. From Tg and Tb it
is possible to define a noise temperature profile Tbg(α), where α is the elevation angle, which
is valid also for negative α, by

Tbg(α) =

{
Tb(α) for 0◦ < α < 90◦

Tg(α) for − 90◦ < α < 0◦
. (2.115)

An actual antenna has a far-field function G(θ, ϕ) which illuminates the whole sky and ground.
Therefore, the noise temperature contribution Ta from the far-field function of the antenna
(we may call it the ideal-antenna noise temperature) has to be calculated as a weighted
average over all directions to the sky and ground (see Fig. 2.19):

Ta =

s
4π
Tbg(α(θ, ϕ))[|Gco(θ, ϕ)|2 + |Gxp(θ, ϕ)|2] sin θdθdϕ

s
4π

[|Gco(θ, ϕ)|2 + |Gxp(θ, ϕ)|2] sin θdθdϕ
, (2.116)

where α(θ, ϕ) is the elevation angle calculated in the direction (θ, ϕ) in the coordinate system
of the far-field function, Gco(θ, ϕ) is the co-polar far-field function, and Gxp(θ, ϕ) is the cross-
polar. It is common in simple calculations to approximate (2.116) by

Ta = (1− pgrd)Tmb + pgrdT0
, (2.117)

where pgrd is the relative power hitting the ground and Tmb is the brightness temperature in
the direction of the main beam. In this case we have assumed reflection coefficient γ = 0 at
the ground, so that Tg = T0 from (2.114).

An actual non-ideal antenna will also have losses and mismatch, so that the actual-antenna
noise temperature referred to the receiving port becomes

Tant = eradTa + Tabs ; Tabs = (1− eabs)T0 , (2.118)
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where eabs is the radiation efficiency due to absorption and erad = eabs(1 − |r|2) is the total
radiation efficiency21. A lossy transmission line can be included in eabs. The following simple
relation between (eabs)dB and Tabs can be derived for small losses and is convenient for quick
calculations,

Tabs = −70(eabs)dBK . (2.119)

Thus, an ohmic loss of 0.1 dB gives 7 K contribution to the system noise. The receiver is often
a Low Noise Amplifier (LNA) and its noise performance may be given in terms of the noise
figure

NF = 10 log

(
1 +

Trec

T
0

)
; Trec = T

0
[10(NF)/10 − 1] . (2.120)

The noise figure of a good transistor receiver can be lower than 1 dB, corresponding to 76 K. In
radio telescopes the receivers are often cooled with liquid Helium to give noise temperatures
down to 5 K.

2.5.5 Bandwidth

The characteristics of antennas are normally specified over a certain desired bandwidth ∆f

around the center frequency f0 . The operational frequency band is then defined by

f0 −∆f/2 < f < f0 + ∆f/2 . (2.121)

The performance of most antennas can be scaled in frequency by scaling all the dimensions
in such a way that the dimensions become the same in terms of wavelengths. Therefore, it
is very convenient to describe different antennas in terms of their relative bandwidth. This
can be defined in percent by

(∆f)% = (100∆f/f0)% . (2.122)

For large bandwidths the relative bandwidth is more clearly defined by the ratio

(fmax/fmin) : 1 , (2.123)

where fmax and fmin are the highest and lowest frequencies of the frequency band. This
means that

(fmax/fmin) =
f0 + ∆f/2

f
0
−∆f/2

≈ 1 +

(
∆f

f
0

)
, (2.124)

where the latter approximation is valid only for small ∆f/f0 � 1.

2.5.6 Tolerances

The electrical characteristics of antennas are always linked to their mechanical tolerances. In
some cases (e.g., in large reflector antennas) the system characteristics may be described in
terms of the tolerances of a major critical part of the antenna (e.g., the main reflector). The
tolerances of a reflector is often given in terms of its Root-Mean-Square (RMS) value22[11].

21 Which was seen before in Section 2.5.1.
22 RMS = the square root of the mean square error from an ideal surface.
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This is obtained by calculating the deviations of the actual surface from its best fit theoretical
ideal choice, averaging the square of this deviation over the whole surface, and finally taking
the square root of the averaged value. A reflector must typically have an RMS accuracy
better than λ/50 for loss of gain less than 0.3 dB.

The tolerance requirements for other mechanical parts depend strongly on the antenna type
and how strong the requirements for sidelobes and return loss are. The requirements are also
very different for critical and noncritical parts of the antennas. The critical parts are normally
those having the strongest current densities or fields. In a critical part of a high performance
antenna, the tolerance requirement may be as strong as λ/500. Noncritical dimensions may
deviate several wavelengths from the optimum.

2.5.7 Environmental effects

A customer would like to specify the performance when the antenna is located in its actual
operational environment . So, the antennas need to be characterized under certain temper-
ature, wind, rain, snow and ice conditions. They also may need to withstand shaking and
acceleration. In particular, there are strong environmental requirements for space anten-
nas, referred to as space qualification requirements. Therefore, antenna design involves a lot
of mechanical considerations and knowledge of material characteristics. Sometimes anten-
nas are protected towards environmental effects by an enclosing dielectric shell, referred to
as a radome. Radomes can be of different types, such as space-frame radomes (which are
supported by a metallic space-frame structure), thin dielectric radomes (with wall-thickness
much smaller than a half wavelength), thick tuned dielectric radomes (with wall thickness
equal to half a wavelength of the radome material), and sandwich foam radomes (consist-
ing of thin dielectric sheets around a foam core of a quarter or three quarters wavelength
thickness).

Rain, snow and hail have two different effects on an antenna system. First, the wave propa-
gation in the atmosphere is attenuated due to both scattering from the individual particles
(i.e., drops, flakes and hailstones) and losses in the water molecules. Second, there may exist
direct effects on the antenna, such as:

a) Rain generating a water film on the antennas or their radomes, causing attenuation due
to wave propagation through the film or reflection from it.

b) Rain, or melted snow and hail, penetrating into cables, waveguides or antenna elements,
causing increased loss, strong impedance mismatches and even short-circuiting of antenna
components.

c) Accumulation of snow; dry snow has very little effect on the wave propagation in the low
frequency region, but wet snow may be almost as bad as water.

d) Accumulation of ice is very severe because it is heavy and may destroy the whole mechan-
ical antenna or radome construction, and the wave propagation through ice is very different
from air.

The atmospheric effects of rain, snow and hail are not considered as a part of the antenna
characteristics, rather as a part of the loss budget of the communication system. All the
effects in steps a) to d) above are parts of the antenna characteristics. This means that
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engineers often need to analyze and design antennas as if they are radiating in free space,
but with included layers of water, snow or ice on places where these may accumulate.

2.5.8 Example: Noise temperature and G/T

Consider an antenna with an antenna gain of 28.5 dBi. The system noise temperature is 100 K.
The brightness temperature of the sky is 5 K. Such low brightness temperatures are present
at L-band when the antenna is not pointed towards a source of cosmic noise.

a) How much will the G/T in dB improve if we remove a cable with 0.1 dB loss between the
receiver and the antenna?

b) How much will the G/T in dB improve if we reduce the relative power intersecting the
ground from 20 % to 10 %?

SOLUTION:

The G/T of the system is

(G/T )dB = (G)dB − (Tsys)dB/K = 28.5 dB− 20 dB/K = 8.5 dB/K .

a) A cable with 0.1 dB loss represents a noise temperature of (use (2.119))

Tcbl = 70 · (0.1 dB)K = 7 K .

If we remove the cable, the gain increases by 0.1 dB and the system noise temperature de-
creases by 7 K. The new G/T becomes

(G/T )dB = (G)dB + 0.1 dB− 10 log((Tsys − 7 K)/(1 K))

= 28.6 dB− 19.7 dB/K = 8.9 dB/K .
(2.125)

Thus, the G/T increases by 0.4 dB when we remove a cable with 0.1 dB loss. If the system
noise temperature was less, the increase would have been even more.

b) Using (2.117) with 20 % of the power intersecting the ground, for the antenna noise we
have

Ta1
= (1− 0.2) · 5 K + 0.2 · 293 K .

Correspondingly, with 10 % power intersecting the ground

Ta2 = (1− 0.1) · 5 K + 0.1 · 293 K .

Thus, the antenna noise temperature decreases by

∆Ta = Ta1
− Ta2

= 0.1 · 5 K + 0.1 · 293 K = 28.8 K ,

and the new G/T becomes

(G/T )dB = (GdB)− 10 log((Tsys − 28.8 K)/(1 K))

= 28.6 dB− 18.1 dB/K = 10.5 dB/K .

Thus, the G/T increases by 2 dB when we reduce the power hitting the ground from 20 % to
10 %. If the system noise temperature were less, the increase would be even more.
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Figure 2.20: Block diagram, Thevenin and Norton equivalent circuits of a transmitting antenna.

2.6 Equivalent circuits of single-port antennas

In general, an antenna will be connected to a transmitter or receiver system, often via a
transmission line such as a coaxial cable or rectangular waveguide. In order to analyze the
antenna in this network, we need a circuit representation of it, both in its receiving and
transmitting modes [3].

2.6.1 Transmitting antennas

The equivalent circuit of a transmitting antenna with signal generator and transmission line
is shown in Fig. 2.20. The transmitter is modeled by its Thevenin (or Norton equivalent),
and the antenna is modeled by a complex radiation impedance Za = Ra + jXa (or radiation
admittance Ya = Ga + jBa). The radiation impedance (admittance) is also called the antenna
impedance (admittance) and input impedance (admittance) of the antenna. The radiation
impedance is normally used when the expression for the far-field function G(r̂) is proportional
to the excitation current Iat at the antenna port, and the radiation admittance is used when
G(r̂) is proportional to the excitation voltage Vat at the antenna port. The power dissipated
in the resistive (or conductive) part Ra (or Ga) of Za (or Ya), is equal to the sum of the
total radiated power and the power dissipated as actual heat in the antenna structure due to
losses. Xa (or Ba) is related to the reactive power, i.e., the power oscillating back and forth
inside the antenna and its close neighborhood. The reflection coefficient at the input port is

r = (Za − Zc)/(Za + Zc) , (2.126)

where Zc is the characteristic impedance of the transmission line. This can also be referred
to as the port impedance of the antenna. The reflection coefficient is normally presented
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Figure 2.21: Matching of an antenna and a generator (or receiver) to the transmission line in
between them.

as 20 log(|r|) in dB. The inverse of the reflection coefficient is called the return loss being
−20 log(|r|) in dB.

2.6.2 Impedance matching to transmission line

Most often we wish to design an antenna with small reflection coefficient, in order to avoid
standing waves on the transmission line (Fig. 2.21). Such standing waves increase the ohmic
losses on the transmission line because the wave propagates the same distance several times.
Also, reflections on the line reduce the bandwidth. The signal generator may also get over-
heated as a result of mismatch because the power dissipated in the source resistance Rs will
increase. Ideally we want r = 0, which we refer to as the antenna being impedance matched
to the characteristic impedance of the transmission line. This appears when

Ra = Zc and Xa = 0 , (2.127)

or equivalently, when
Ga = 1/Zc and Ba = 0 . (2.128)

2.6.3 Receiving antenna

The equivalent circuit of an antenna in the receiving mode is shown in Fig. 2.22. The antenna
is the same as the one in Fig. 2.20 and is modeled either by its Thevenin (or Norton) equiv-
alent circuit. The source impedance Za (admittance Ya) is equal to the radiation impedance
(admittance) for the transmitting mode, and the equivalent source voltage Var (current Iar)
is proportional to the amplitude of the incoming wave.

We use the Thevenin equivalent when the expression for the far-field function G(r̂) is pro-
portional to the excitation current Iat in the transmitting mode. Then, the induced voltage
in the equivalent circuit for the receive case is

Var = − 2jλ

ηIat
G(r̂) ·E0 , (2.129)
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Figure 2.22: Block diagram, Thevenin and Norton equivalents of the antenna in Fig. 2.20 when it
is used as receiving antenna.

where η = 377 Ω ≈ 120πΩ is the free space wave impedance. E0 is the electric field vector
of an incident plane wave propagating in the direction −r̂. In fact, E0 must be the complex
vector of this wave at the location of the phase reference point of G(r̂).

We use the Norton equivalent when the expression for the far-field function G(r̂) is propor-
tional to the excitation voltage Vat in the transmitting mode. The induced current in the
equivalent circuit for the receive case is

Iar = − 2jλ

ηVat
G(r̂) ·E

0
, (2.130)

where η and E0 is the same as in (2.129).

We have here not derived the expressions in (2.129) and (2.130). This can be done by
assuming that E0 is produced by an incremental dipole in infinity and using the reciprocity
relation between the reactions between this dipole and the excitations of the antenna23.

2.6.4 Conjugate impedance matching

Absorbed power in the load ZL = RL +jXL or YL = GL +jBL is referred to as received power.
There will also be power dissipated in the radiation resistance of the receiving antenna. This
power corresponds to the power that is radiated by the currents that the incident wave
induces on the antenna. The antenna is also in this case matched to the transmission line
if (2.127) or (2.128) is satisfied. We normally also require that the receiver load satisfies

23 See Section 4.5.
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RL = Zc and XL = 0 to match the load to the transmission line. If so, the powers dissipated
in Ra and RL are equal.

If the transmission line is short, or if the receiver is connected directly to the antenna port, we
may use conjugate matching of the load to the antenna. Then, we choose the load impedance
in such a way that

Z
Lt

= Z∗a , i.e., R
Lt

= Ra , and X
Lt

= −Xa , (2.131)

where ZLt = RLt + jXLt is the load impedance transformed through the transmission line to
the antenna port. This load maximizes the power transferred to the load for a given Za and
a given power density of the incident wave. The principle of conjugate matching is known
from circuit theory.

2.6.5 Impedance and reflection coefficient transformations

When analyzing an equivalent circuit such as that in Fig. 2.21, we need to know how to
transform reflection coefficients and impedances along transmission lines. These formulas
can be found in the textbooks on transmission line theory, but we will include them here for
the sake of completeness. The reflection coefficient r2 in Fig. 2.21 is expressed in terms of
the antenna impedance Za and the characteristic impedance Zc of the transmission line as

r
2

=
Za − Zc
Za + Zc

. (2.132)

Alternatively, if we know r
2
, Za can be found from

Za = Zc

(
1 + r2

1− r
2

)
. (2.133)

The reflection coefficient r
2

when measured at the input port 1 of the transmission line is

r
2
(l) = r

2
e−j2βl , (2.134)

where β is the propagation constant on the transmission line and l is its length. The
impedance seen at this point is

Za(l) = Zc

(
1 + r

2
(l)

1− r
2
(l)

)
, (2.135)

This can also be expressed as

Za(l) =

(
Za + jZc tanβl

Zc + jZa tanβl

)
Zc . (2.136)

The corresponding formulas for the admittances are

Ya(l) = Yc

(
1 + ra(l)

1− ra(l)

)
=

(
Ya + jYc tanβl

Yc + jYa tanβl

)
Yc . (2.137)
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Figure 2.23: Examples of small reflections r1 and r2 on a transmission line, for a plane wave incident
on a dielectric plate, and at the terminal of a feed for a parabolic reflector.

2.7 Periodic reflection coefficients r(f)

An important part of the process of designing an antenna is to match its impedance to the
transmission line connected to its port. This ensures that the power of the signal entering
from the transmission line is accepted by the antenna and not reflected back. The impedance
matching may be done numerically, but very often an additional experimental tuning in
a measurement setup is needed. In both cases it will be helpful to know how different
reflections interfere. This can help in sorting out the location of a reflection. The interference
between reflections can be treated approximately in a simple manner which is well suited for
estimations by using the theory of small reflections, as described below.

Consider the transmission of a wave inside a transmission line or in free space. At two
positions z1 and z2 along the transmission line there are some small reflections r1 and r2 ,
respectively (Fig. 2.23). This may be for instance a wave inside a coaxial line which has a
non-ideal connector at one end, z

1
. At the other end, z

2
, it is connected to the input port

of a monopole antenna. It can also be a wave between the port of a small feed horn at z
1

and a parabolic reflector at z
2
, in which part of the reflected wave from the paraboloid is

received by the feed horn giving rise to the reflection r2 . It may also be a plane wave incident
normally on a dielectric sheet, in which case the reflection r1 appears from the front side of
the sheet and r2 = −r1 from the rear side.

For an accurate analysis of the interference between two reflections we need to use the
impedance transformation formulas in Section 2.6.5. When the reflections are small, typ-
ically |r1 | < 0.2 and |r2 | < 0.2, we can find the total reflection r by using the approximate
formula

|r| =
∣∣∣r1

+ r
2
e−j2β(z2−z1 )

∣∣∣ , (2.138)

where β is the propagation constant on the transmission line between z
2

and z
1
. This formula

is very convenient for quick calculations by hand, and it is easily interpreted. The absolute
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Figure 2.24: ?Example of interference between two reflections separated by ∆z = z2 − z1 = 30 cm
when |r1 | is −17 dB for different levels of |r2 |.

value of r is a periodic function which varies with frequency, because

β = 2π/λ = 2πf/c ,

with c the phase velocity of the wave on the transmission line between z
1

and z
2
. Note that,

for simplicity we consider a nondispersive transmission line with β proportional to f .

The frequency difference ∆f = f2 − f1 between two interference maxima (or minima) of |r|
in (2.138) is found by letting the phase term change by 2π, i.e.,

2β
2
(z

2
− z

1
)− 2β

1
(z

2
− z

1
) = 2π , β

2
− β

1
=

π

(z
2
− z

1
)
,

which gives

∆f = f
2
− f

1
=

c

2(z
2
− z

1
)
.

The formula for ∆f is the same as that of calculating the frequency when the wavelength is
2(z2 − z1). The maximum value of |r| is |r1 |+ |r2 |, and the minimum is |r1 | − |r2 |. The VSWR

is

VSWR =
1 + |r|
1− |r| ≈ 1 + 2|r| ,

where the approximation is valid for |r| < 0.1.

Fig. 2.24 shows |r| in dB when it is calculated by the exact transmission line formulas for
r1 = 0.2 (i.e., −17 dB) and different r2 with z2 − z1 = 10 cm. The agreement with the above
approximate formulas for small reflections is very good.?24

24 A Matlab code exists, for calculation by both the exact and the approximate formulas.
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Figure 2.25: Illustration of multi-port array antenna with element ports and beam ports.

2.8 Equivalent circuits of multi-port array antennas

Array antennas have more than one radiating element. Then, the element ports may be
combined to one or more beam ports via a power divider network for the transmitting case or
a power combination network for the receiving case25. The power combiner/divider networks
can be used to generate multiple beams excited via the beam ports. If the element ports are
combined to only one port, the antenna may be characterized on this port as a single-port
antenna.

In a multi-port antenna there will generally be mutual coupling between the ports, meaning
that if we excite one port with a voltage we will be able to measure an induced voltage at
the other ports. This mutual coupling can be characterized by mutual impedances Z, mutual
admittances, Y , or so-called scattering parameters, S. The scattering parameters are defined
as the ratio between the incoming and reflected waves in a transmission line connected to
the ports, and they are commonly referred to as S-parameters.

The equivalent circuits and definitions of Z- and S-parameters of a two port antenna are
given in Appendix F.

2.9 Further reading

Several system aspects of antennas are described in various chapters in the classic radar book
by Skolnik [4]. See also the reference list to Chapter 1.

2.10 Complementary comments by S. Maci

The far-field definition is usually adopted for antennas with D > 2λ. For smaller antennas
the distinction between reactive near-field distance and far-field distance loose meaning. It
is indeed more appropriate defining the far-field distance by the factorization of the field
in (2.39), namely when the field can be seen as the product between e−jkr/r and a function
depending only on θ and ϕ. For small antennas the far field distance can be defined by
looking at where the quadrupole moment contribution becomes negligible [5], or equivalently
as discussed in Section 4.2.1 of this book, when the higher order terms of the 1/kr expansion

25 This was already explained on page 3 and shown in Fig. 2.25
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of the field from the incremental current sources become negligible. In [6] it is suggested
to use the practical rules Rfar = λ for D < λ/4, i.e., small antennas, which agrees with the
approximations in Section 4.2.1.

The far-field function G(r̂) defined in (2.39) in this book may have other names in other
textbooks, and many authors prefers to normalizing it like f(r̂) = G(r̂)/|G(r̂)|max. Stutzman
and Thiele [7] call it a normalized far-field pattern, and Franceschetti calls it a radiation
vector [8]. The power integral P defined in (2.65), normalized with respect to the maximum
vector function value |G(r̂)|2max is sometimes called the beam solid angle; i.e., Ω = P/|G(r̂)|2max

(e.g., [5, page 35] or [9, page 45]). This quantity is interpreted as the solid angle of an
equivalent antenna having uniform radiation intensity |G(r̂)|2max in any direction inside Ω and
zero elsewhere, and radiating the total power of the true antenna. The beam solid angle is
related to the maximum directivity by D0 = 4π/Ω. For antennas with directivity larger than
20 dB, the beam solid angle is approximately equal to the product of the 3 dB beam angle
θ(E)

3 dB
and θ(H)

3 dB
in the two principal planes, when these are expressed in radians; i.e.,

Ω ≈ θ(E)
3 dB

θ(H)
3 dB

.

This gives the relation
θ(E)

3 dB
θ(H)

3 dB
≈ 4π/D

0
,

between the 3 dB beam angles and directivity D0 [9, page 46]. This expression is less accurate
than the ones derived in Sections 2.4.4-2.4.6, but its simplicity allows for a fast estimate of
the 3 dB angles in directive antennas.

Whenever it is possible to define a current Iat at the antenna terminals, some authors,
(i.e., [10]) define an effective vector height ht(r̂) for the transmitting mode by

E(r̂) = jkη
e−jkr

4πr
Iatht(r̂) .

This definition originates from the far-field radiated by an elementary dipole. In fact, for
an elementary dipole ht(r̂) = ∆zθ̂ sin θ. According to the notation followed in the present
book, we have ht(r̂) = 4π

I
0
jkη

Gt(r̂). In the receiving mode, it is possible to define an effective

vector height for the receiving mode, by the relationship hr(r̂) · E0 = Var, where Var is the
voltage of the Thevenin equivalent circuit in Fig. 2.22. Following this definition, the antenna
reciprocity can be expressed as ht(r̂) = hr(r̂), namely by requiring that the effective vector
height for the transmitting mode is identical to the one for receiving mode.

2.11 Exercises

1. Polarization and dB:

a) The axial ratio of a circularly polarized wave is 1 dB. Find the relative cross-polar level
and the polarization efficiency.

b) A desired linearly polarized wave has an axial ratio of 20 dB. Find the relative cross-polar
level and the polarization efficiency.

c) Consider a desired linear x-polarization. The wave is elliptically polarized with 20 dB axial
ratio. However, the major axis of the polarization ellipse makes an angle of 20◦ with the x-axis.
What is now the relative cross-polar level and the polarization efficiency? How much do the
cross-polar level and the polarization efficiency improve if we tilt the desired polarization in a
way that it becomes aligned with the major axis of the polarization ellipse?
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d) Consider an elliptically polarized wave with 3 dB axial ratio. Find the relative cross-polar
level and the polarization efficiency when we consider the desired polarization to be the best
linear. Compare the values with those we obtain when the desired polarization is the best
circular.

2. Polarization: For a circular polarization excitation, make a Matlab program which calcu-
lates the relative cross-polar level caused by simultaneous amplitude and phase errors. Present
the results in a contour plot with amplitude and phase as variables. Start with the existing
Matlab document for Fig. 2.3.

3. Phase center: Derive Eq. (2.63) for the phase center location of a symmetrical radiation
pattern.

4. Phase center: The table below shows a measured phase pattern.

θ 0◦ ±10◦ ±20◦ ±30◦ ±40◦

Phase 95◦ 105◦ 140◦ −175◦ −90◦

a) Calculate the phase center location within the ±20◦ sector. Calculate the phases for all
angles when the phase reference point is moved to this phase center.

b) Calculate the phase center location within the ±30◦ sector. Calculate the phases for all
angles when the phase reference point is moved to this phase center.

5. Polarizer and noise temperature: Consider the example in Subsection 2.2.6 on the mis-
match in the polarizer. Assume that port 2 is terminated by 50 Ω and that the impedances
on ports 3 and 4 are 75 Ω.

a) How large is the contribution to the system noise temperature due to the mismatch on
ports 3 and 4 when the antenna noise temperature is 40 K?

b) Assume that we locate the termination on port 2 inside a cold box with temperature 20 K.
How large is now the contribution to the system noise temperature due to the mismatch on
ports 3 and 4? What is the axial ratio of the polarization ellipse due to the same mismatch?

c) Assume that port 2 is terminated by a 75 Ω load in room temperature. What is now the
contribution to the system noise temperature and what is the axial ratio of the polarization
ellipse?

6. Directivity and phase reference point: Consider a hypothetical omnidirectional antenna
with constant phase, i.e.,

G(θ, ϕ) = const.(sinϕθ̂ + cosϕϕ̂) .

a) What is the polarization of this antenna along the z-axis?

b) Find the phase patterns in the E- and H-planes if the phase reference point is moved to
z = 0.5λ. Sketch it.

c) Find the phase patterns in the E- and H-planes if the phase reference point is moved to
x = 0.5λ. Sketch it.

d) Find the directivity of the omnidirectional source. Does it depend on the location of the
phase reference points.

e) Find the cross-polarization in the above three cases.

f) Find the directivity when the antenna only radiates into the upper hemisphere, i.e.,

G(θ, ϕ) = 0 for π/2 < θ < π .

7. Fraunhofer approximation: Derive the condition for which the Fraunhofer approximation
is valid in Section 2.3.4 by assuming that r0 = x0 x̂ and r = rẑ, and expanding r′ = |r − r0 |
in a power series for small x0 . What is the maximum phase error due to the approximation
when r′ = x2

0
/λ and r′ = 2x2

0
/λ? The largest phase error appears always in the direction

where r̂ ⊥ r0 .
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8. BOR1 antenna: Consider a BOR1 antenna with a 3 dB half-beamwidth of 15◦ in both E-
and H-planes.

a) Find the directivity from the approximate cosn(θ/2) formulas.

The mechanical design of the antenna is modified and cause the following changes of the
radiation pattern in E-plane: the 3 dB half-beamwidth increases to 17◦ and sidelobes which
are −25 dB less than the main beam maximum, appear between θ = 60◦ and θ = 110◦. The
pattern does not change in H-plane. There is no change in the phase patterns.

b) Find the new directivity by using the formulas in the examples in Subsection 2.4.4 and 2.4.5.

c) Find the largest value of the relative cross-polar level at θ = 15◦. In which ϕ-plane does it
appear?

9. BOR1 antenna: We excite the unmodified BOR1 antenna in exercise 8 for circular polariza-
tion with an axial ratio of 1 dB on axis.

a) Find the polarization efficiency in dB.

b) What is the largest value of the relative cross-polar level within the main beam?

10. BOR1 antenna: If there are phase differences in the E- and H-planes, they can be included
in the approximate theoretical far-field function in the following way,

G(θ, ϕ) = cosn(θ/2)(e−jk∆(cos θ−1) sinϕθ̂ + ejk∆(cos θ−1) cosϕϕ̂) ,

where ∆ is adjusted to account for the actual measured phase difference at the θ-value for
which the beam pattern is 10 dB down.

a) Derive a formula to calculate ∆ from this phase difference. Where are the phase center
locations of the E- and H-plane patterns?

b) Derive the co- and cross-polar radiation patterns in the 45◦-plane. Simplify the formula
for the cross-polar field by expanding the resulting equation for small ∆. Sketch the patterns.
What is the level of the cross-polar sidelobe when ∆ = λ/4 and the 10 dB widths of the E-
and H-plane patterns are 60◦?

c) Assume that we excite the antenna for circular polarization. Where is the phase center
of the co-polar pattern? What are now the cross-polar patterns in the 0◦- and 90◦-planes?
Sketch them.

11. Conjugate matching: Derive the conjugate matching condition in (2.131) by using the
equivalent circuit in Fig. 2.22b and by maximizing the power delivered to the load for a given
radiation impedance Za.
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Chapter 3

Characterization in multipath

Mobile wireless terminals such as handset or phones are subject to strong fading due to
multipath propagation. This is true in particular when they are used in urban and indoor
environments. Then, the performance can be significantly improved by making use of antenna
diversity. This means that the signals on two antennas (with different positions, polarizations
or radiation patterns) are combined in a way that there are shallower fading minima in
the combined signal than either of the contributing signals. Thereby, the Signal-to-Noise
Ratio (SNR) in the fading dips will be better, so that the fading margins in the system link
budget can be reduced. The increased SNR will also allow the capacity of the communication
channel to be increased by using a higher order modulation, if the system allows this. In
addition, if we have several antennas on both the transmitting and the receiving sides, we can
establish several communication channels (referred to as bitstreams) through the multipath
environment. This allows for even larger capacity increase. Such systems are often referred
to as Multiple Input Multiple Output (MIMO) systems. The present chapter describes how to
characterize both single-port and multi-port antennas for use in multipath and in particular
for achieving diversity and MIMO performance.

The so-called reverberation chamber [1] has since the nineteen-eighties been used for EMC

testing of radiated emissions and immunity. It is a metal cavity that is sufficiently large
to support many resonant modes at the frequency of operation. It contains some proper
tools to stir the modes so that statistical field variations appear. It has been shown that the
reverberation chamber represents a multipath environment of a similar type that we find in
urban and indoor environments. And, since year 2000, its application has been extended to
characterize antennas and terminals designed for use in multipath environments. Therefore,
this chapter also describe how reverberation chambers work and how they can be used to
measure performance of antennas and active terminals, in particular when used with diversity
and MIMO capability.

3.1 Multipath without Line-of-Sight (LOS)

Traditionally, antennas were designed for use in environments where there is a Line-of-Sight
(LOS) between the two sides of the communication link. Therefore, antennas were charac-
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terized equivalently, by measurements in anechoic chambers. Still, there may be additional
wave paths between the transmitting and receiving sides. For instance, large smooth objects
located outside the LOS cause reflection, edges of large objects cause diffraction, and small
or irregular objects cause scattering of the waves originating from the transmitting antenna.
The wave contributions via these paths will add at the receiving side. They have independent
complex amplitudes (i.e., amplitudes and phases), so that they may add up constructively
or destructively, or something between these two extremes. In addition, the wave paths and
their complex amplitudes change fast with time, due to the moving of the terminal or objects
of the environment. Thus, large signal variations will be present at the receiver as a function
of time, referred to as fading. The largest signal variations appear when the LOS is blocked.
This type of fading is commonly referred to as small scale fading. In contrast, LOS signal
variations appearing only due to variations in distance from the transmitting antenna or due
to shadowing is referred to as large-scale fading, see [2, Sections 2 & 4].

3.1.1 Rayleigh fading and CDF

At the receiving side the multipath environment can be characterized by several independent
incoming plane waves. The independency means that their amplitudes, phases and polar-
izations as well as the Angles of Arrival (AoA) are statistically arbitrary relative to each
other. If the LOS is absent, and if the number of incoming waves is large enough (typically
a few hundred), or if we move the antenna around in a less rich environment, the in-phase
and quadrature components of the received complex signal become normally distributed,
i.e., a complex Gaussian distribution. This corresponds to a Rayleigh distribution of the
signal magnitudes, and an exponential distribution of the power. The phase is uniformly
distributed over 2π. The complex Gaussian distribution is a direct result of the central limit
theorem.

The left graph in Fig. 3.11 shows an example of a Rayleigh fading signal. We see that the
signal varies by more than 25 dB. The Rayleigh fading is most conveniently illustrated by the
Cumulative probability Distribution Function (CDF), showing the cumulative probability of
signal amplitudes in dB, which is shown in the right graph in Fig. 3.1. In this figure the
reference level for the dB values is obtained as the sum of the received powers of all the
samples divided by the number of samples, i.e., the average received power. We see that
there is a probability of 0.1 % of having deeper dips than −30 dB, and of 1 % of having deeper
dips than −20 dB, and of 10 % of having deeper dips than −10 dB. These values are descriptive
for the Rayleigh distribution and very easy to remember.

3.1.2 Angle of Arrival (AoA), XPD and polarization imbalance

The arriving waves may have a certain AoA distribution in the elevation and azimuth planes.
It is natural to assume that the mobile terminal can be oriented arbitrarily relative to direc-
tions in the horizontal plane, which means that the azimuth angle is uniformly distributed.
The terminals may under normal use have a certain preferred (or most probable) orien-
tation relative to the vertical axis, and common environments (in particular outdoor) have
larger probability of waves coming in from close-to-horizontal directions than close-to-vertical.

1 There exist Matlab code for all figures of which the caption start with ?.
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Figure 3.1: ?Example of a fading signal (left) and its CDF (right). The signal levels are presented
in dB after being normalized to the time averaged power.

Therefore, we may need an elevation distribution function to describe real multipath envi-
ronments. Real environments normally also have a larger content of vertical polarization
than horizontal, because most base stations are vertically polarized. This is in propagation
literature characterized by a Cross-polar Power Discrimination (XPD) [3]. We here instead
refer to this as a polarization imbalance in the environment, as it represents a deterioration
of the isotropic reference environment defined later. Both the AoA distribution and XPD are
different in different real-life environments. This is problematic because the performance of
the antennas and wireless terminals then depend on where they are used or measured. So
the results of measurements in one environment cannot directly be transferred to another.
Therefore, it is convenient to define a reference environment, which can easily be reproduced
in practice, giving repeatable results for the performance. The rich isotropic multipath en-
vironment has this characteristic, being a result of polarization balance and a uniform AoA

distribution over the whole sphere.

3.1.3 Rich Isotropic Multipath (RIMP)

As explained above it is desirable to have a rich isotropic reference environment with po-
larization balance and a uniform distribution of AoA in both azimuth and elevation. The
latter means an environment in which all AoAs over the whole unit sphere are equally prob-
able. This simplifies the characterization of antennas and terminals in the sense that the
performance becomes independent of the orientation of the antenna in the environment. The
reverberation chamber emulates such a rich isotropic multipath (RIMP) environment, pro-
vided it is large enough. This reference environment has no true counterpart in reality, but it
is still quite representative as any environment appears isotropic if the terminal is used with
arbitrary orientations in the environment. It is here important to point out that normally an
antenna is not located symmetrically on the phone. Therefore, the phone has different orien-
tations in the environment when used in talk positions on the left and right sides of the head.
This is because opposite sidewalls of the phone point upwards for these two talk positions. A
rich environment means that typically at least 20 waves are present instantaneously.
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The RIMP environment will produce independent and identically distributed (i.i.d.) chan-
nels if the multi-port antennas being considered have uncoupled ports with the same total
radiation efficiency. The i.i.d. case is a well-established reference case in theoretical works on
communication systems and propagation.

3.2 Characterization of single-port antennas in RIMP

3.2.1 Antenna impedance, port impedance and reflection coeffi-
cient

All antennas are characterized by their far-field function2 G(θ, ϕ) and antenna impedance3 Za.
The far-field function can be used to plot the co-and cross-polar radiation patterns and to find
traditional pure LOS quantities such as directivity and sidelobe levels. For antennas operating
in a RIMP environment the shape of the far-field function does not play any significant role,
in particular not for single antenna systems. In multi-port antennas it has some significance
as it determines the correlation between the received signals on the ports.

In order to connect to other components like receivers and transmitters the antenna must
have a well-defined port, often in the form of a transmission line or a connector for a trans-
mission line. The characteristic impedance Zc of this transmission line defines the port
impedance, normally 50 Ω. When the port impedance is known, the antenna impedance can
be transformed to a complex reflection coefficient r on the transmission line, where4

r = (Za − Zc)/(Za + Zc) . (3.1)

In an S-parameter representation of the antenna, r = S11 .

3.2.2 Mean Effective Gain (MEG) and Directivity (MED)

Antennas in fading environments are sometimes characterized by the so-called Mean Effective
Gain (MEG), the formula of which is given in [3] and [4]. This can be calculated from the
far-field function of the antenna, and it is a function of the orientation of the antenna, its
polarization, and the azimuth and elevation distributions of the AoA in the environment, as
well as the XPD of the environment. For the RIMP environment the MEG becomes equal to
half the classical total radiation efficiency erad, i.e.,

MEG = erad/2 . (3.2)

Generally, the MEG of an antenna in an arbitrary environment can be decomposed in two
factors: the classical total radiation efficiency and the mean effective directivity (MED), i.e.,

MEG = MED · erad . (3.3)

In this way the MED solely contains the effects of the environment and the shape of the
radiation pattern, whereas the radiation efficiency contains the effects of losses and impedance

2 Definition of the far-field function is on page 35.
3 Antenna impedance is defined on page 65.
4 For impedance and reflection coefficient transformations, see page 68.
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mismatch. The formula for MED is the same as for MEG, but the “realized gain” far-field
functions in the formula for MEG must be replaced by the “directive gain” far-field functions
in the formula for MED5. Therefore, the ratio between MEG and MED becomes the same as
between the classical realized and directive gains for LOS systems, i.e., the total radiation
efficiency. The total radiation efficiency can be measured in a reverberation chamber. We will
not give the formulas for the MEG and MED here, because we have limited our considerations
to the RIMP environments as explained before. The MEG is discussed in detail in [40].

3.2.3 Total radiation efficiency and transmission formula

From the previous subsections we can state that for antennas in RIMP environment the
performance is determined only by the total radiation efficiency, and not by the shape of
the radiation pattern and the realized gain. The total radiation efficiency includes both
the radiation efficiency due to absorption (ohmic losses) in the antenna, and the mismatch
factor6.

This means that the average transferred power between two antennas, when both of them
are located in RIMP, is proportional to the product of the radiation efficiencies of both of
them, whereas in free space it is proportional to the product of their realized gains7. The
attenuation in multipath environment is also much larger than in free space.

Often, the base station antenna is located above the scattering environment, and the terminal
is located inside the multipath environment. Then, the average power transfer function will
be proportional to the realized gain of the base station antenna, and to the total radiation
efficiency of the terminal.

3.3 Characterization of multi-port antennas in RIMP

In LOS systems we can increase the signal to noise ratio by increasing the directivity of the
antennas, because the received signal increases with the gains of both the transmitting and
receiving antennas. However, in the previous section we have explained that antennas in
RIMP environments do not improve performance by increasing directivity. Still, we can use
several antenna elements to form a diversity or MIMO system. However, to achieve a better
performance we must process the received signals, in a dynamic manner.

To realize antenna diversity and MIMO systems we need several antenna elements located
together in an array, as illustrated in Fig. 3.2. This is not a classical antenna array in the
sense that the elements are combined with specific amplitude and phase relations between
them. Therefore, we prefer to call the diversity or MIMO antenna a multi-port antenna
rather than an array. To be more precise, each port can be characterized as a single antenna,
and the signal inserted (transmitting case) or being present (receiving case) at each port has
no prescribed amplitude and phase relation to the signals on the other ports. Instead, the
signals are continuously processed in an adaptive way to optimize system performance. The
processing is based on first measuring the channel between the transmitting and receiving

5 The directive and realized gains are defined in Section 2.3.9 and 2.5.1, respectively.
6 The radiation efficiency and mismatch factor were already defined on page 56.
7 For instance, see Friis transmission equation on page 59.
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Figure 3.2: Definition of MIMO system with multi-port antennas on both the transmitting and
receiving sides. There are in total Nr × Nt channels through the environment, each one defined
between one input port of the transmitting antenna and one output port of the receiving antenna.

antenna ports. This corresponds to as full calibration of the communication link from one port
of the transmitting antenna to a port on the receiving antenna, including the environment.
It is commonly referred to as channel estimation, and is done continuously to account for all
variations of the environment.

3.3.1 Definition of channel

In communication and propagation literature the term channel is used to denote the complex
signal amplitude received at a specific port of a receiving antenna relative to the signal
inserted at a specific port of the transmitting antenna. Thus, there are Nr×Nt channels if the
transmitting antenna has Nt ports and the receiving antenna has Nr ports. This means that
the channels represent the S-parameters between the ports of the transmitting and receiving
antennas. Thus, the propagation channel is defined with the antennas included.

Classical single-beam array antennas for LOS systems have one port. They are characterized
by their far-field functions and antenna impedances in the same way as other single-port
antennas. The latter is the impedance seen at the array port when all elements are excited
with the amplitude and phase that give the desired shape of the far-field function. The
far-field function of a classical array antenna is the product of two factors: the far-field
function of a single element and the array factor8. There is more about classical arrays in
Chapter 10.

In theoretical work on diversity and MIMO systems the element antennas are sometimes
treated as being isolated. This means that neighboring elements are ignored (removed) when
dealing with each element. However, such analysis must be done with caution because this
isolated element approach is not strictly valid when analyzing multi-port antennas. It only
gives correct results if the ports are completely uncoupled, which they rarely will be in reality,

8 This assumes that the far-field function, of a single embedded element is the same independent of its
location in the array, see Section 10.1.1 and 10.3.1.
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except for two-port antennas with orthogonal polarizations on the two ports. The correct
analysis is done by using the embedded element approach as described below9.

3.3.2 Embedded elements

The embedded element approach has also its background in classical array analysis. However,
compared to the isolated element approach it is regarded as an advanced topic. Thus, it is
rarely covered in introductory antenna courses. The embedded element approach considers
the far-field of each single array element when all the other elements are present, but they are
not excited, rather terminated with their port impedances. The far-fields of such embedded
elements are sometimes called active element patterns, a terminology introduced already
in [5], but they are now more commonly (and descriptively) referred to as embedded element
far-field functions, a term used already in [6].

The excited antenna element induces radiating currents on the terminated non-excited ele-
ments. Therefore, the far-field function of the embedded element may be very different from
that of the isolated element, in particular if the elements are closely spaced with large mutual
coupling. The far-field functions of the embedded elements are used to describe blindness
in classical arrays, whereas in MIMO and diversity antennas they play a more significant
role.

In a multipath environment the received signals on every port are detected and digitalized
independently of each other and thereafter they are combined dependent on the channel
estimates. Therefore, each port receives signals through their embedded far-field functions.
There may also be multi-port processing on the transmitting side. Then, we need to use
embedded element patterns in the transmitting mode analysis as well. In this way, the radia-
tion efficiency at each port as well as the correlation between their signals, are determined by
their corresponding embedded far-field functions. Both these quantities (radiation efficiency
and correlation) are needed in order to quantify performance of diversity and MIMO antenna
systems. Such analysis in terms of far-field functions of embedded elements was introduced
in [7] and [8] based on the analysis of antenna diversity in [9].

The far-field functions of embedded elements can be computed by most commercial computer
programs for antenna analysis, by exciting one port and terminating all non-excited ports
with their port impedances (normally 50 Ω). The embedded element patterns can also be
measured in anechoic chambers. However, it is also possible to characterize diversity and
MIMO antennas in RIMP without knowing the embedded element patterns explicitly. For
example, the reverberation chamber provides a way of measuring radiation efficiency and
correlation without going via the embedded element patterns10.

3.3.3 Embedded radiation efficiency and decoupling efficiency

We will now explain how to calculate the total radiation efficiency of an element in a multi-
port antenna. Fig. 3.3 illustrates a diversity antenna consisting of two dipoles connected
to their receivers/transmitters. This means that we have assumed that antenna diversity
is implemented. This configuration was analyzed in [6] by using a classical semi-analytical

9 There is more about embedded and isolated element approaches in Chapter 11.
10 There is more about embedded and isolated element approaches in Chapter 11.
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Figure 3.3: llustration of diversity antenna consisting of two parallel dipoles. There are receivers
and/or transmitters at each of the two dipole ports.

approach represented by the equivalent circuit in the upper part of Fig. 3.4. The approach
in [6] is generally applicable to any two-port antenna consisting of single-mode radiating
elements, such as dipoles, slots and to some extent patches. The most accurate will always
be to perform a complete numerical computation using an electromagnetic solver of any
kind. Then, there is no restriction to the elements being single-mode. The general form of
the equivalent circuit is shown in the lower part of Fig. 3.4. This latter equivalent circuit
is too simple to show the induced currents, so it cannot be used to calculate or understand
why the far-field function is different from that of an isolated antenna element. This general
simplified equivalent circuit is simply an illustration of the result of a numerical calculation
of Za and G(θ, ϕ)11, which is a one-port equivalent circuit. The equivalent circuit will look
the same at port 2, but it will generally have differentG(θ, ϕ) and Za.

If the diversity antenna itself consists of materials with very small or no losses, the only
contributions to the total radiation efficiency of the embedded element will be the absorption
in the termination on port 2, and the reflections on the excited port 1. Using the upper
equivalent circuit in Fig. 3.4, the input impedance of the embedded element is

Za = Z
11

+
Z

12
I

2

I
1

= Z
11
− Z2

12

Z
22

+ Zc
, (3.4)

where the latter is obtained directly from the right loop of the equivalent circuit. The
reflection coefficient r at port 1 and the corresponding mismatch factor eref1 become

r =
Za − Zc
Za + Zc

and eref1 = 1− |r|2 . (3.5)

The total power that is accepted by port 1 is found as Pacc = <{Zin}|I1 |2/2. The difference
between this and the power P2 = Zc|I2 |2/2, absorbed in the load on port 2, is the radiated
power Prad, i.e., Prad = Pacc − P2 . Finally, the total radiation efficiency at port 1 becomes

11 For more information see also page 65.
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Input impedance

Port 1 Port 2

Figure 3.4: Complete equivalent circuit (upper figure) for calculation of the far field function and
radiation efficiency of the embedded element 1 of a diversity antenna consisting of two single-mode
elements, each with its own port. Port 1 is excited, and port 2 is terminated. Z11 and Z22 are the
impedances of the two isolated element antennas. Z12 = Z21 is their mutual impedance. r = S11 is
the complex reflection coefficient on port 1. The lower figure shows the equivalent circuit of the same
two-port antenna as in the upper figure, but on the general Thevenin form for one-port antennas.
The port impedances are Zc = 50 Ω.
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Receivers and/or transmitters  

and diversity or MIMO combination 

and/or separation network 

n = 1, 2, ..., N antenna ports  

Figure 3.5: Illustration of N -port antenna that can be characterized by its S-parameters between
all ports.

erad = eref1eabs with eabs =
Prad

Pacc
= 1− Zc|I2

|2
<{Zin}|I1 |2

, (3.6)

where eabs is the efficiency due to the power dissipated in the load on port 2. This eabs is
therefore the radiation efficiency of port 1. This can be expressed much simpler by using the
S-parameters between ports 1 and 2, according to

erad = 1− |S
11
|2 − |S

21
|2 , eref1 = 1− |S

11
|2 ,

eabs =
1− |S

11
|2 − |S

21
|2

1− |S11 |2
.

(3.7)

These radiation efficiencies can also be called embedded element efficiencies, reflecting the
fact that the port is connected to one element of an array with the other elements present and
terminated. The S-parameter expressions can readily be extended to any multi-port antenna,
such as that illustrated in Fig. 3.5. The total embedded radiation efficiency of element number
i when there are a total of N ports becomes

erad = 1−
N∑
j=1

|Sji|2 . (3.8)

This total embedded radiation efficiency can also be called a decoupling efficiency. There will
be an additional efficiency factor if there are losses in the materials that the antenna is made
of. Therefore, (3.8) is only valid as a total radiation efficiency if the antenna is lossless.

Eq. (3.8) also defines a fundamental limitation of elements in classical dense arrays [10]. If the
elements are very close (typically closer than 0.5 wavelengths), the mutual couplings cause
a severe efficiency reduction of each embedded element. This fundamental limitation causes
the directivity of a dense classical array to be smaller than the directivity of each isolated
element multiplied with the number of the elements12.

The mismatch factor and embedded total radiation efficiency of the two parallel dipoles are
plotted together with the S-parameters in Fig. 3.6 as a function of dipole spacing. The S-
parameters have been obtained using the formulas for self impedance and mutual impedance
between two dipoles given in Chapter 5 and 9, presented in Fig. 5.9 and 10.9 respectively.
We see that the efficiency degrades severely when the dipoles approach each other.

12 See Section 11.3.2.
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Figure 3.6: ?S-parameters of two parallel halfwave dipoles and their embedded total radiation
efficiency.

3.3.4 Correlation between ports

The fading environment has statistical properties, so we need to characterize the performance
in terms of the CDFs of the received signals on the different ports. The most random case
is that the received voltages on the ports are completely independent, i.e., uncorrelated. In
practice there will be some correlation between them. This is characterized by a complex
correlation coefficient ρ defined by13

ρ =

∑
V1V

∗
2√∑

V1V ∗1
∑
V2V ∗2

(3.9)

where V1 and V2 are sequences of the samples of simultaneously received voltages of two
ports numbered 1 and 2, and the sums are taken over all the samples. Sometimes we have
not access to the phases of V1 and V2. Then, we can evaluate the envelope correlation

ρe =

∑ |V1V
∗
2 |√∑ |V1|2
∑ |V2|2

(3.10)

and it is easy to replace this in the formulas for the diversity gain in Section 3.4.4 by using
that for Gaussian variables

|ρ| =
√
|ρe|2 (3.11)

13 This correlation formula is only valid for quantities with a zero mean value, like the received voltages in
RIMP.
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Formula 3.9 can readily be transformed to deterministic integrals in terms of the normalized
scalar-products between the far-field functions of the two ports, i.e., according to [3],

ρ =

s
4π

G
1
(θ, ϕ) ·G∗

2
(θ, ϕ)dΩ√s

4π
G1(θ, ϕ) ·G∗

1
(θ, ϕ)dΩ

s
4π

G2(θ, ϕ) ·G∗
2
(θ, ϕ)dΩ

, (3.12)

where G1(θ, ϕ) and G2(θ, ϕ) are the embedded far-field functions of ports 1 and 2, respectively.
The effect of the correlation on diversity gain is analyzed below and quantified by (3.21).
Eq 3.12 is valid between two ports of any antenna in RIMP.

It is also possible to express the same complex correlation coefficient in terms of the S-
parameters measured at the antenna ports, but only if there are no ohmic losses in the
antenna. The appropriate formula for the envelope correlation is given in [11, Eq. (5)] for
the multi-port case. A careful derivation corresponding to that in [11] gives for the complex
correlation

ρ =
−(S∗

11
S

12
+ S∗

21
S

22
)√

[1− (|S
11
|2 + |S

21
|2)][1− (|S

12
|2 + |S

22
|2)]

. (3.13)

The denominator is readily seen to be equal to the square root of the product of the embedded
element efficiencies on each of the two ports, see (3.7). The absolute value of this complex
correlation is plotted in Fig. 3.12 for the two dipoles introduced in Section 3.3.3.

3.4 Characterization of diversity performance

With diversity, two antennas are used, located sufficiently far from each other (space diversity)
or otherwise with orthogonal polarizations (polarization diversity), or orthogonal embedded
far-field functions (pattern diversity), so that there is low coupling between them. The
received statistical signals on the two ports will then be uncorrelated in RIMP, and it is
very unlikely that there will be fading dips simultaneously on both ports. Therefore, by an
appropriate combination of the two signals, the probability of a fading dip in the combined
signal will be considerably reduced. There are several different possible combination schemes,
such as switch diversity, Selection Combining (SC ) and Maximal Ratio Combining (MRC ),
and the improvement of the CDF will be as large as 12 dB at the 1 % level of the CDF. We
will here not detail the different diversity schemes and instead refer to [3]. We assume MRC

in the discussions to follow.

3.4.1 Channel estimation and digital MRC processing

In order to characterize diversity and MIMO antenna systems we need to know the algo-
rithms employed in the signal processing. We will here explain Maximal Ratio Combining
(MRC ).

The basis of a digital diversity and MIMO system is channel estimation. This means that
the transfer functions are measured between the Nt transmitting and Nr receiving ports in
Fig. 3.2, i.e., all the Nr×Nt channels. These correspond to the S-parameters Sij between the
transmitting and receiving sides. We could in traditional antenna terms call this a calibration
of the whole antenna system including the environment.
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The channels can only be measured on the receiving sides (based on measuring known pilot
signals transmitted from the transmitting side), unless the channels are the same in both
directions. Such reciprocity is only present if the uplink (i.e. transmitting from terminal
and receiving at base station) and downlink (i.e. the opposite) transmissions appear at
the same time and frequency. This will in practice mean the time and bandwidth within
which there is no fading, i.e., the coherence time and coherence bandwidth of the channels,
respectively. However, this is generally not the case. Therefore, we have to deal with two
cases referred to as: a) Channel State Information (CSI) being known and b) CSI being
unknown, on the transmitting side. The former allows for adaptivity by signal processing
also on the transmitting side. This will improve performance compared to the processing on
the receiving side only. The second case is more common and will be illustrated here.14

The data stream is transmitted after the channels have been estimated. This is generally
done by a complex amplitude modulation of the channels over time. The modulation must
generally be fast compared to the coherence time of the environment (after which the channel
must be re-estimated), and slow enough to be within its coherence bandwidth. Otherwise,
the estimated channels will not be correct. Thus, best data transmission is present as long
as the received channels are the same as the estimated channels (except for the modulation
of the former). The reason is that the estimated channels are used to optimize the detection
of the signal (i.e., data) on the modulated channels. However, the user and the environment
change with time, so the channel matrix must be regularly re-estimated.

Let us use h′i to denote the estimated channels on the receiving ports, and C(t)hi to denote
the modulated received channels, where the time variation is used to denote the modulation.
We have by the latter assumed that the modulation is fast compared to the coherence time
and narrowband compared to the coherence bandwidth of the environment. Let us assume
that we have a total of Nr×Nt channels with the same modulation C(t). Then, the optimum
way to receive the modulated signal C(t) is to combine the received channels in this way

Copt(t) =
∑
all i

C(t)hi · wi (3.14)

where wi = h′∗i are the weights with h′∗i denoting complex conjugation of the channel es-
timates h′i. Thus, we combine the modulated channels by using the complex conjugate of
the estimated channel values as weights, see Fig. 3.7. This sum is referred to as MRC . This
corresponds to the conjugate matching in Section 2.6.4. The conjugate matching of a load
ensures maximum power transfer to the load, and MRC ensures maximum power transfer of
the combined power available in all the Nr received channels. It is important to be aware that
this MRC is done digitally after detection and digitalization of the channels, and that the
combined signal is a complex voltage quantity and not a power quantity. The MRC will also
generally represent a maximization of the signal-to-noise ratio. The conjugate matching and
MRC correspond to what in general EM field theory is referred to as conjugate field match-
ing (CFM ). Above, we explained MRC for when combining channels available on different
receiving ports, but the approach is general and we can combine channel values originating
from different transmitting ports in the same way.

14 CSI is known only on the receiving side in Frequency Division Duplex (FDD) systems, because the
frequencies are different on uplink and downlink. It is in principle known on both sides in Time-Division
Duplex (TDD) systems.
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Figure 3.7: Block diagram of MRC algorithm applied to four-port antenna for which w1 = h′∗1 and
w2 = h′∗2 with h′1 and h′2 being the channel estimates. The A/D box is a receiver with an analogue
to digital converter. The example four-port antenna is shown to the right.

3.4.2 Example: MRC applied to 2D slot antenna case

Let us illustrate MRC for the case of a transmitting antenna with one port and a receiving
antenna consisting of Nr isolated15 short slots with 0.5λ spacing in an infinite ground plane,
as shown in Fig. 3.7. The sources are then represented by short magnetic dipoles that have
omnidirectional far-field functions in one plane, and we orient them so that this is the xz-
plane. The ground plane limits the radiation to ±90◦. We will present the formulas of the
analysis for the more general case of Nr elements equally spaced along the x-axis with spacing
d. The co-polar far-field function of each element i in the xz-plane is then

Gi(θ) = ejkxi sin θ (3.15)

by using (2.52) and (2.41) for ϕ = 0◦. For simplicity we have here and in the rest of this
section omitted constants as they do not affect the shapes of the radiation patterns. Let
us now for this study choose the very simple case that we have Q incident waves from the
directions θq having phase Φq and equal amplitudes. We want the total available incident
power to be the same independent on the number of waves, so we use accordingly complex
wave amplitudes

Eq =
√

1/QejΦq . (3.16)

Then, we can use (2.129) (see also (3.30)) to get the following total induced voltage at the
port of element i (this is the channel estimation):

Vi =

Q∑
q=1

Gi(θq)e
jΦq =

Q∑
q=1

ej(kxi sin θq+Φq) (3.17)

These first Vi are therefore the estimated channels h′i. After the estimation has been com-
pleted we can combine the ports in the optimum way for receiving the signal modulated on

15 Isolated elements means that we do not consider mutual coupling in this analysis.
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the Q waves by using the MRC algorithm in (3.14). The received combined signal becomes
then, by using the weights wi = h′∗i ,

MRC =

Nr∑
i=1

Vih
′∗
i =

Nr∑
i=1

(
Vi

Q∑
q=1

e−j(kxi sin θq+φq

)
. (3.18)

The far-field function for the whole antenna is obtained by summing up all far-field functions
in (3.15) over all elements by using the estimated channel weights in (3.17) as port weights.
This, gives

Gall(θ) =

Nr∑
i=1

V ∗i e
jkxi sin θk . (3.19)

Let us now determine the radiation patterns of this far-field function and discuss them, when
Nr = 4 and 10. We assume first that there is one incoming wave like in a LOS environment,
see the two upper-most graphs in Fig. 3.8. Note that there are two curves in each graph,
corresponding to two different AoAs of the wave, 0◦ (solid curve) and 60◦ (dashed curve),
respectively. We see that MRC corresponds to forming a main beam from the elements that
point in the AoA of the incoming wave, like in a classical array. The main beam is very
wide for the 4-element case, but it is much narrower for the 10-element case. For the case
of a plane wave coming in from 60◦ we also see a large lobe at −90◦, i.e., along the ground
plane. This is the beginning of what in classical array theory a grating lobe. If the spacing
is larger than 0.5λ, there may be more such grating lobes having the same level as the main
lobe16.

Let us now assume that there are two incoming waves with equal phase, see the two middle
graphs in Fig. 3.8. Then, the MRC will result in one main lobe (with a shallow dip between
them) covering both AoAs for the 4-element array case, and two clear main lobes for the
10-element case, one in each AoA direction. There are three sidelobes and four deep dips
between these main lobes, which means that the phase in the two main lobes are the same
(the phase changes by 180◦ when the pattern goes through a null). If the phase of one of
these plane waves now is changed to be 180◦ relative to the other (dashed curve), two main
lobes with a deep null between them are formed for the 4-element case. This allows then
for constructive reception of the two incident waves, by making their corresponding received
voltages have the same phase.

If there are more than two plane waves we will not be able to distinguish lobes in the directions
of the waves for the 4-element array, but we see four clear main lobes for the 10-element array,
as shown in the two lower graphs in Fig. 3.8.

For larger arrays the conclusion will be the same. We will not be able to form directive beams
towards the AoAs unless there are more antenna ports than waves in the environment. The
MRC algorithm is still generally referred to as beam-forming, and it is the optimum way of
combining the channels to achieve the highest signal-to-noise ratio.

The Selection Combining (SC ) algorithm is much simpler than MRC. In SC combining, the
receiving port with the strongest signal-to-noise ratio is selected at each time interval, and
the others are not used. SC does not work as a classical array for the case of a single incident
wave. In RIMP it is still quite efficient.

16 See Chapter 10.
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Figure 3.8: ?Illustration of the far-field patterns (beams) formed on the receiving side of two
different MIMO arrays when the MRC algorithm is used. The two arrays consists of 4 (left graphs)
and 10 (right graphs) small slots, respectively. The slots have, half wavelength spacing on an infinite
plane (see Fig. 3.7). The number of incident waves, their angles of arrival (AoAs) in the xz-plane,
and their relative phases in the center of the array are explained by the arrows (AoAs) and curve
legends below each graph. The AoA direction of 0◦ corresponds to broadside. The two curves in
each graph corresponds to two different phase relations between the incident waves, except for the
upper two graphs where the two curves represent different AoAs. The phases of the incident waves
are explained in the legends below the AoA arrows.
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Note that the radiation patterns in Fig. 3.8 only are examples. The wave amplitudes and
AoAs are statistical in nature, so we need to characterize the performance of MIMO arrays by
CDFs. The presented patterns are only intended to illustrate that we only get interpretable
lobes in the directions of the waves when there are fewer incoming waves than antenna
ports.

3.4.3 Diversity gains (apparent, effective and actual)

The quality of a diversity antenna system is determined by the improved shape of its CDF in
the environment. Improved shape means that the slope of the CDF is steeper, and any shift
towards higher signal-to-noise values. Therefore, we need to specify the environment, and
we need to know the CDFs at each port. We limit ourselves here to the well-defined RIMP

environment. The CDFs are determined from the discrete channel samples measured on each
port of the receiving antenna, and from the channel samples at the port of a reference antenna
in the same environment. The samples are measured17 or simulated for different channel
realizations. The channel realizations can be obtained, e.g., by moving the antenna around
in the RIMP environment, by locating it at many different fixed locations, or by changing
statistically the amplitudes and AoAs of the waves in the environment. The reference antenna
is typically a wideband single-port antenna with known total radiation efficiency.

A CDF of a channel is obtained from the channel samples in the following way:

1. Produce a set of M channel samples, where M is a number preferably larger than or
equal 1000.

2. Compute the average received power from all samples, i.e., take the square of the
absolute value of all samples, sum them up, and divide by M .

3. Normalize all samples to the square root of the average received power of the ideal
reference antenna. This is the average received power of the reference antenna divided
by its known total radiation efficiency.

4. Arrange all normalized samples from the lowest to the highest level and number them
successively from 1 to M .

5. The CDF is then the curve obtained by plotting the sample number divided by the
total number of samples (i.e., the cumulative probability) versus the level of the corre-
sponding samples in dB.

Such a CDF will in an ideal RIMP environment have the theoretical Rayleigh shape except at
the lowest levels where the probabilities are close to 1/M . Therefore, we can produce more
accurate CDFs by using more samples. The shape of the CDFs in RIMP will also deviate
from Rayleigh shape if the environment contains a small LOS contribution, and if it is not
rich enough.

We now use the two parallel dipoles in Fig. 3.3 as an example, with a given separation
between them of 0.045λ so that there is a significant mutual coupling and a low embedded
radiation efficiency. Then, Fig. 3.9 shows the CDF of the fading channel amplitudes in RIMP

environment. The theoretical Rayleigh distribution is included as a reference. The CDFs

17 The channel samples can, e.g., be measured in a reverberation chamber, see Section 3.7, or they can be
simulated as explained in Section 3.6.5.
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observed on any antenna port have the same shape as this theoretical Rayleigh, but they
are shifted horizontally with respect to the Rayleigh by the value of their total embedded
radiation efficiencies in dB. If we apply MRC to the signal samples on the two ports, we get
the improved MRC CDF shown in the figure, having a steeper slope.

The diversity gain is the difference in dB between the MRC CDF and a reference Rayleigh
CDF at a certain CDF-level, normally chosen to be 1 %. We can distinguish between apparent,
effective and actual diversity gains [7] and [12], depending on what kind of reference we
use. The reference is a Rayleigh-shaped CDF corresponding to an ideal antenna with 100 %

efficiency, and therefore the dB value is referred to as a dBR value.

Apparent diversity gain: The reference CDF is the CDF at the port with the strongest
average power levels.

Effective diversity gain: The reference CDF is the CDF at the port of the ideal reference
antenna, i.e., the theoretical Rayleigh CDF.

Actual diversity gain: The reference CDF is the CDF at the port of an existing practical
single-port antenna. The latter is then normally the single-port antenna that is to be replaced
by the diversity antenna under test, so that we can determine the actual improvement over
an existing solution. Both antennas must therefore be measured at the same location, e.g.,
relative to a head phantom.

In the case of actual diversity gain, the practical antenna reference shall be located in the
position relative to an object (e.g., a head phantom) that corresponds to the desired position
of operation of the terminal at which the antennas are located. Under these definitions, the
actual diversity gain in dB is the effective diversity gain in dB minus the radiation efficiency
in dB of the single-port existing antenna that the diversity antenna shall replace. The latter
value is negative, so the apparent diversity gain appears much larger than it actually is if
the reference was an efficient single-port antenna. The effective diversity gain represents the
gain over an ideal single-port reference antenna, where the latter is characterized with no
additional antenna in its proximity.

We see that in our example in Fig. 3.9 the apparent diversity gain at 1 % CDF level is 8 dBR,
whereas the effective diversity gain compared to the ideal single-port antenna reference is
only about 3 dBR. This means that if the receiver system allows for a fading margin of 20 dB

to be able to receive with sufficient quality 99 % of the time or for 99 % of the users (i.e.,
1 % CDF level), we can reduce the fading margin by 3 dB if we use this specific diversity
antenna (two parallel dipoles with 0.04λ spacing) instead of a very good single antenna. This
3 dB diversity gain could easily be made larger by using larger dipole spacing, or by choosing
two orthogonal dipole antennas. The theoretical maximum is 12 dB by MRC (and 10 dB by
selection combining). The discrepancy between 3 dB and 12 dB is in the example mainly
due to the low radiation efficiency when the dipoles are so close. This is caused by mutual
coupling, giving large absorption in the 50 Ω load of the not-excited dipole. In contrast, the
reduced diversity gain due to correlation has minor effect, as explained below.

The published results of diversity gains as a function of dipole spacing can be seen in
Fig. 3.1018 with MRC. Similar results are shown for selection combining in [7] including
verification by measurements in reverberation chamber. There it is also shown significant
actual diversity gain for antennas used near the human body (using a simple cylindrical head

18 There exist Matlab code for all figures of which the caption start with ?.
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Figure 3.9: ?CDF of the ideal reference antenna (corrected for its finite radiation efficiency) and of
a diversity antenna consisting of two parallel dipoles separated by 0.05λ.

phantom). The actual diversity gain is shown to be more than 6 dB, even when the dipole
separation is only 0.06λ. Antennas with uncoupled orthogonally polarized ports will naturally
have larger diversity gains.

3.4.4 Theoretical determination of diversity gain

Theoretically, we can determine the effective diversity gain Geff by the following formula

Geff = eradGapp , (3.20)

where Gapp is the apparent diversity gain. This depends on the correlation coefficient ρ
obtained from (3.12) by using the far-field functions of the two embedded ports, and for a
lossless antenna the simpler equation (3.13) can be used. The relation between apparent
diversity gain and correlation is given by the following approximate formula in [13, pp. 474],

Gapp = 10.5 · eρ with eρ =
√

1− |ρ|2 , (3.21)

where 10.5 is the maximum apparent diversity gain at 1 % CDF level with selection combining,
and eρ is an approximate expression for the decorrelation efficiency , i.e., the reduction in
diversity gain due to correlation between the signals on the two ports. This formula is not
very accurate for correlations close to unity when compared with the more accurate formulas
in [13, pp. 470]. However, if we scale ρ with a factor 0.99, the formula becomes

eρ =
√

1− |0.99 · ρ|2 , (3.22)

which differs from the more accurate expression for the apparent diversity gain at 1 % CDF

by less than 0.1 dB as shown in Fig. 3.11. It is worthwhile to note that the correlation must
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Figure 3.10: ?Correlation between the ports of two parallel halfwave dipoles in RIMP, and the
apparent and effective diversity gains by MRC versus dipole spacing.

be very strong in order to cause a significant reduction of the diversity gain.

Eq. (3.21) can only be used when the embedded total radiation efficiencies are the same on
the two ports. In [14] there is presented an empirical formula that can be used also when the
efficiencies on the two ports are different. This is

Gapp =

√(
1 +

emin

emax

)2

+ 105
emin

emax
(1− |ρ|2) (3.23)

where emin and emax are the embedded total radiation efficiencies on the two ports.

Otherwise, and for more ports, the diversity gain can be determined from measured and
computed CDFs [15]. The formulas in (3.22) and (3.23) are simple, but we still need to
perform channel measurements or simulations in order to determine the complex correlation
ρ from (3.9), (3.12) or (3.13).

3.5 Maximum available capacity from Shannon

In modern MIMO mobile communication systems there will be multi-port antennas on both
the base station and terminal sides to form several communication channels between them,
referred to as spatial multiplexing. These different communication channels are commonly
referred to as bitstreams to separate them from the larger number of channels available
to achieve diversity. For instance, four antennas on both sides form 4 × 4 = 16 possible
channels in the way they are defined in Section 3.4.3, but there will only be four bitstreams
available. This correspond to communication via the eigenvectors of the whole channel
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Figure 3.11: ?Correlation efficiency factor at 1 % CDF, i.e., reduction of diversity gain at 1 %
cumulative probability level, as a function of the pattern correlation in (3.12), obtained with the
approximate equation (3.22) and the exact expression in [13].

matrix, where the eigenvalues are the signal strength of each bitstream. The most common
way of diagonalizing a matrix is Singular Value Decomposition(SVD). However, the SVD

requires preprocessing on the transmitting side and therefore CSI to be known. Therefore,
other bitstream decomposition methods are more common, requiring only processing on the
receiving side, such as Zero Forcing (ZF ).

The data on the transmitting side is distributed among the different bitstreams, which there-
fore contain completely different modulated information in contrast to the diversity MRC

case in Section 3.5.1 that maximizes the received power for one bitstream. If CSI is known
on the transmitting side it is possible to transfer much more information.

The maximum possible average channel capacity in a MIMO system can be calculated by
using Shannon’s fundamental formula for maximum available capacity. We illustrate this
basic Shannon capacity with two simple examples in LOS. The wireless channel is treated in
much more details in [16].

3.5.1 Single-port system

The maximum available capacity of a communication channel through any environment is
given by Shannon’s classical formula

C = log2 |1 + SNR| (bits/s/Hz) , (3.24)

where SNR is the signal-to-noise ratio at the receiving side, and where log2 means the log-
arithm with base 2. This means that the capacity of a system not only depend on its
bandwidth, but also depends on the SNR. Thus, if we increase the transmit power, we can
transfer more bits/s/Hz over the channel19. This is done in practice by increasing the order

19 This is valid if the modulation of the signal is allowed to change adaptively.
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of the modulation. However, we have to know the channel and its SNRs in order to benefit
from this. Therefore, channel estimation and its feedback to the transmitter is important in
communication engineering. The Shannon formula is also valid under fading, but then the
SNR of the channel varies with time, in which case channel estimation must be performed
continuously, and hence becomes a very important issue.

3.5.2 Parallel channels in LOS

If we use two parallel communication systems instead of one, we can naturally double the
capacity if they are mounted in a way that there is no interference. This can be done, e.g., by
locating the antennas of the extra system in the nulls of the radiation patterns of the other,
or to use orthogonal polarization of the two systems. Thus, the maximum available capacity
of two such systems corresponding to two parallel channels (i.e., two bitstreams) becomes

C = C1 + C2 = log2

∣∣∣∣1 +
1

2
SNR1

∣∣∣∣+ log2

∣∣∣∣1 +
1

2
SNR2

∣∣∣∣
= log2

(∣∣∣∣1 +
1

2
SNR

1

∣∣∣∣ ∣∣∣∣1 +
1

2
SNR

2

∣∣∣∣) ,

(3.25)

where the indices on C and SNR denote systems 1 and 2. The factor 1/2 on all the SNRs

means that we have divided the total transmitted power equally between the two channels.
We will now discuss whether or not it is possible to increase the capacity by combining the
two antennas on each side to a classical directive array so that a single communication system
with larger SNR is formed.

The signal to noise ratio of a LOS system is given by

SNR =
Pr
N

=
PtGtGr

(
λ

4πr

)2
N

, (3.26)

where Pr is the received power, Pt is the transmitted power, Gr is the realized gain of the
receiving antenna, Gt is the realized gain of the transmit antenna, N is the noise power, and
λ/4πr is called the free space attenuation. We now double the gains on both the transmitting
and receiving sides by combining on each side two equal uncoupled directive antennas to a
classical directive array with the double gain. Then, the SNR of the new single-bitstream
system with classical two-element arrays on both sides becomes

Classical arrays: SNR
2×2

= 4SNR , (3.27)

i.e., four times larger than the SNR of each of the two systems. The condition for this equation
to be valid is that the noise power is independent of the antenna gain. This assumption is
normally true in practical ground-based communication systems.

The capacities for the two cases; two parallel low gain links with the power equally distributed
between the two transmitting antennas, and one high gain link, become

Two parallel low gain links: C
2lg

= 2 log2 |1 + 1
2SNR|

One high gain link: C
1hg

= log2 |1 + 4SNR| (3.28)
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Figure 3.12: Maximum available capacity according to Shannon’s formula for two parallel 1 × 1
systems (one antenna on each side), and one 2× 2 antenna system where the two antennas on each
side are combined to a directive array of double directivity on each side.

in (bits/s/Hz). These two equations are plotted and compared in Fig. 3.12 to show that as
long as SNR > 10.8 dB in each channel it is advantageous (for increasing capacity) to use
parallel systems with low gain antennas rather than one system with high gain antennas.
The maximum available capacity increases by up to a factor 2 when we double the number
of channels (for large SNR). These are theoretical results. In practice there will be other
limitations that may change this conclusion, e.g., hardware and cost constraints.

3.5.3 Parallel channels in multipath

In a fading environment the instantaneous capacity is given by the same formula as for the
LOS case, but the formula for the SNR is different. The space attenuation is much larger
due to the scattering from all blocking objects, and the SNR will fade with the fading signal
level. Therefore, it is common to use an average maximum available capacity (also called
ergodic capacity) in characterization of systems used in multipath, obtained by averaging
the Shannon capacity over the distributed variations of the power samples of the signal. The
power samples are distributed exponentially in Rayleigh fading.

In a MIMO system with multiple-port antennas on both the transmitting and receiving sides
there are many channels through the environment. Consider the two-port antennas from
the example, in Section 3.5.2, but now in a multipath environment. Then, the signal (from
each of the two transmitting ports) will be received on both the receiving antenna ports. In
principle we will have the same situation as in LOS. If SNR is small it is better to combine
the ports to one bitstream using diversity whereas if SNR is large we can use spatial diversity



3.5. MAXIMUM AVAILABLE CAPACITY FROM SHANNON 98

to get two bitstreams (links) and thereby higher capacity.

The general formula for the maximum available capacity of a MIMO system with an Nt-port
transmit antenna and an Nr-port receiving antenna is

C̃ = log(2)

(
det

(
I

Nr×Nt
+

SNR

Nt
H̃

Nr×Nt
H̃
∗
Nr×Nt

))
, (3.29)

where INr×Nt
is a unit matrix, H̃Nr×Nt

is a normalized complex channel matrix, and H̃
∗
Nr×Nt

is the complex conjugate transpose of H̃Nr×Nt
. The normalization must be done with respect

to average received power on a reference antenna with known radiation efficiency. The C̃

and H̃ notation with the tilde symbol means that C and H fade with time, so that we need
to average the C̃s over the distribution function of the signal power in order to compare the
channels. The channel matrix contains fading samples of the channels which means that we
need to average C̃ over the distribution of H̃Nr×Nt

.

The Shannon formula represents the maximum available capacity, and this is very far from
what is achievable in practice. In practical systems typically 6 dB more transmitted power
is needed than given by Shannon’s formula, for a given desired capacity. Therefore, the
Shannon capacity is not very useful for characterization of antenna systems. We will instead
choose the ideal digital threshold receiver for such characterization, to be introduced in
Section 3.8.

3.5.4 Normalization

The correct normalization of the channel matrix is very important. It must be done with
respect to the square root of the time averaged power received on a single-port reference
antenna with 100 % radiation efficiency20. And this reference antenna must be located in the
same environment, and we must require that the total power transmitted from the antenna on
the opposite side of the environment is the same as when we produced the channel matrix.
We will in the next subsection show how typical channel matrices can be computed and
measured.

3.5.5 Numerical simulation of channels in multipath

We will now explain how to simulate a fading environment numerically. First, we generate
a set {Ek} of k = 1, 2, ...,K incident plane waves with AoAs (θk, ϕk) randomly and uniformly
distributed over a sphere surrounding the MIMO array to be investigated. The sources Ek

in the set have independent and complex Gaussian-distributed amplitudes of the θ- and ϕ-
polarized components. We compute the combined open-circuit received voltage Vi on each
embedded antenna port due to all these waves by using the equivalent circuit of the antenna
in receiving mode (see Fig. 2.22), i.e.,

Vi = −2jλ

ηI

K∑
k=1

Gi(θk, ϕk) ·Ek , (3.30)

20 See §3 in the procedure in Section 3.4.3.
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where all parameters have been explained previously21 and Gi(θ, ϕ) is the embedded far-field
function on port i. The power absorbed in the load RL becomes

P
i

=
1

2
R
L

∣∣∣∣ Vi
Za + Z

L

∣∣∣∣2 , (3.31)

which has its maximum value when the antenna is matched to the load, i.e., when Z∗a = ZL,
as shown in Section 2.6.4.

In order to determine the performance of a specific multi-port antenna with Nr ports in an
Nr × Nt MIMO system, we assume that the Nt ports at the opposite transmitting side are
completely uncorrelated with equal amplitude. We can model this by generating Nt sets of
incident plane waves, with k = 1, 2, ..., 20 plane waves in each set, and calculating Nt values
of received voltages Vi at each receive antenna port i. The received voltages are then put
row-wise into the channel matrix H.

We compute the received voltages of the reference antenna in the same way by using (3.30)
and one set of incident plane waves, but now using the far-field function of the reference
antenna. This should as explained Section 3.5.4 and Section 3.4.3 be a matched antenna
with 100 % radiation efficiency.

Then, we repeat the calculation of the received voltages Vi on the Nr receive antenna port,
and the received voltage on the reference antenna port i = ref, a large number of times MCDF ,
for example MCDF = 10000 times. The larger M the better convergence of the CDF, and the
better estimate of the average received power. The average received power on the reference
antenna is evaluated using

Pav =
1

MCDF

M
CDF∑
m=1

(Pref)m . (3.32)

Now we have a reference level and can determine the CDF and the total embedded radiation
efficiency at each port i of the multi-port that we are investigating, and thereby evaluate the
diversity gains as explained in Section 3.4.3.

The embedded radiation efficiency on port i of the multi-port antennas becomes e.g.,

eradi =
1

Pav

1

M
CDF

M
CDF∑
m=1

(Pi)m , (3.33)

where Pi is given by (3.31).

3.6 Emulation of RIMP using reverberation chamber

The reverberation chamber is a large metal cavity provided with mode stirrers and one or
more antennas, as shown in Fig. 3.13. It has been used for more than 30 years for Electro-
magnetic Compatibility (EMC ) measurements of electromagnetic susceptibility and radiated

21 See Section 2.6.3.
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emissions of electronic devices, as described in the overview article in [1]. The basic theories
of it have also been well understood [13], [17]-[19]. The main EMC application has been to
generate high field strength for susceptibility testing. In recent years the reverberation cham-
ber has also been developed to a more accurate instrument for measuring the characteristics
of desired radiation of small antennas and active mobile terminals. In particular when these
are intended for use in Rayleigh fading, such as for wireless/mobile communications in urban
or indoor environments. We here describe how the reverberation chamber works, and how
to measure the performance of antennas as defined in the previous chapters.

3.6.1 Mode stirring (mechanical, platform, polarization)

The basic measurement setup in a reverberation chamber is illustrated in Fig. 3.13(a). This
setup is used both for calibration of the chamber and measuring passive antenna performance.
We measure the transmission coefficient S21 between two antennas in the chamber. One of
these is the reference antenna or the Antenna Under Test (AUT), and the other is part of the
chamber and could be wall-fixed. The reference antenna is used during calibration. The AUT

is used during tests. The chamber is so large that several cavity modes are excited at the
frequency of test, so the level of S21 may be larger than in free space, but it may also be much
lower, depending on how the modes are excited and how they interfere (combine) resulting
in fading. Reverberation chambers are provided with different ways of stirring the modes
and thereby the S21 level varies, i.e., emulation of fading. The most common mechanical
mode stirring methods are to use fans or other large rotating or translating mechanical
structures.

The chamber in Fig. 3.13 has the following stirring capabilities:

1. Mechanical stirring: This is achieved by means of two plate-shaped stirrers, which can
be moved along a complete wall and along the ceiling using electrical stop motors. The
larger volume the stirrers cover, the better.

2. Platform stirring [20]: The AUT test is located on a rotatable platform which moves
the antenna in the chamber. This stirring method is very effective in small chambers.

3. Polarization stirring [21]: There are three orthogonal wall-fixed chamber antennas, and
S21 is successively measured between each of them and the AUT. Thus, the chamber
gets a good polarization balance.

There is also a fourth very effective stirring method, referred to as frequency stirring [22].
This corresponds to averaging S21 (complex frequency stirring) or |S21 |2 (power frequency
stirring) over a frequency band during the processing of the results. This will be treated in
the next section.

3.6.2 The S-parameters of the chamber and of the antennas

Fig. 3.14 illustrates how S11 and S12 are measured between two antennas inside a reverbera-
tion chamber. We can physically argue that S11 of the AUT must consist of two contributions:
one contribution being the Sa

11
from the antenna itself as if it was located in free space, and



101 CHAPTER 3. CHARACTERIZATION IN MULTIPATH

(a) (b)

Three �xed chamber antennas with di�erent orientations

AUT & head phantom
on turntable

mechanical
plate

stirrers

(c)

Figure 3.13: Typical reverberation chamber (RC) for Over-The-Air (OTA) measurements.
(a) Sketch of RC and measurement setup for calibration and measurements of performance of multi-
port antennas (sketch shows two parallel dipoles). (b) ?Color plot of relative E-field distribution
computed at the walls of simplified RC and on three orthogonal surfaces meeting in the center of
the chamber, for illustration of the statistical nature of the fields. When the stirrers move, the field
distribution will change. (c) Drawing of RC with wideband disk-cone antenna for calibration of the
transfer function. The calibration antenna can be replaced by a passive Antenna Under Test (AUT)
or an active wireless Device Under Test (DUT).
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Figure 3.14: ?Example of measured S-parameters of two antennas in a reverberation chamber as
a result of mode stirring, and illustration of the deterministic and random contributions to them.
Note that the deterministic part in reality is much smaller.

another Sc
11

from the chamber, i.e.,

S11 = Sa
11

+ Sc
11
. (3.34)

The former of these contributions is deterministic, whereas the latter is random as a result of
the stirring. If the number of independent samples of Sc

11
is large enough, Sc

11
gets a complex

Gaussian distribution with zero mean. Therefore, it is possible to determine Sa
11

by complex
averaging of the measured S11 over all stirrer positions i, and if needed by additional complex
frequency stirring, as shown in [23], i.e.,

Sa
11

=
1

M

∑
all i

S
11

= S
11
, (3.35)

where S11 is a compact way of writing the average of S11 . Similarly we can find Sa
22

of the
wall-mounted chamber antenna.

In a similar way, we can argue that S21 must consist of two contributions, one deterministic
contribution Sd

21
being the same as in free space, and another statistic contribution Sc

21
coming

from the chamber, i.e.,
S21 = Sd

21
+ Sc

21
. (3.36)

3.6.3 Rayleigh fading, Rician fading and AoA distribution

We would like the reverberation chamber to provide the rich isotropic reference environment
RIMP with Rayleigh fading. This requires the direct coupling in (3.36) to be as low as
possible. The direct coupling follows the free space transmission equation, also referred to as
Friis transmission equation22, yielding

|Sd
21
|2 =

(
λ

4πr

)2

GtGr , (3.37)

22 See page 58.
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where r is the distance between the antennas, λ is the wavelength, and Gt and Gr are the real-
ized gains of the wall-mounted antenna and AUT, respectively, in the direction of the opposite
antenna. Therefore, the main lobes of the antennas should not point towards each other.
The polarization stirring is very effective to reduce direct coupling, as the direction of the
AUT will be different in different stirrer positions. The direct coupling together with loading
the chamber can alternatively be used constructively to get a controlled Rician distribution
for test purposes, as proposed in [24].

From the discussion in the previous subsection, it is clear that the reverberation chamber
provides Rayleigh fading if the direct coupling is reduced to be sufficiently smaller than the
chamber contribution to S21 . This can be done by platform stirring, using a metal shield to
block the direct coupling, or by using a wall fixed antenna that has a null in the direction of the
AUT. In [25], it was shown that each mode in a rectangular cavity can be expressed as eight
plane waves, and that the arrival directions of these plane waves are uniformly distributed
over the unit sphere, if there are enough excited modes. Therefore, the reverberation chamber
represents a RIMP environment if it is large enough, i.e., the desired reference environment
defined in Section 3.1.3.

3.6.4 Average transmission level (Hill’s formula) and calibration

The transmission between two antennas in free space follows Friis transmission equation (3.37).
The corresponding formula for transmission between two antennas located in a reverbera-
tion chamber is Hill’s transmission formula, see [18]. This is valid when there is no direct
coupling, and it presumes a large chamber with many excited modes. We choose to refer to
Hill’s formula as the chamber power transfer function, and to present it in the following form

Gchm = |Sc
21
|2 =

Pr
Pt

=
c3erad1erad2

16π2V f2∆f
, (3.38)

where f is the frequency, c is the velocity of light, V is the chamber volume, erad1 and
erad2

are the total radiation efficiencies of the two antennas, and ∆f is the average mode
bandwidth. The latter consists of four additive contributions due to: the wall losses, power
leakage from the chamber, the antennas present in the chamber, and any absorbing objects
in the chamber, i.e.,

∆f =
∑
all

walls

∆fwal +
∑
all

slots

∆fslt +
∑
all
ant

∆fant +
∑
all
obj

∆fobj ,
(3.39)

with

∆fwal =
2A

3V

√
cρf

πη
, ∆flek =

cσ1

4πV
,

∆fant =
c3erad

16π2V f2
, ∆fobj =

c

2πV
σa ,

(3.40)

where η is the free space wave impedance, A the area of a conducting surface (such as a
chamber wall) with surface resistance ρ, σ

1
is the leakage cross section of a narrow slot

in the chamber wall, and σa is the absorption cross section of an absorbing object. σ
1
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and σa are defined in [18]23 and have slow frequency variation compared to the explicit
frequency variation in the formulas. The total ∆f can be very different in different practical
chambers, corresponding to chamber quality factors (Q) of between 30 and several thousands
(Q = f/∆f).

In practice a measurement of radiation efficiency goes as follows. First, the chamber trans-
fer function is determined by calibration, using a reference antenna with known radiation
efficiency erad2

, and with the AUT present in the chamber with its port match-terminated.
The actual measurement will then be done by match-terminating the reference antenna and
mounting the cable to the port of the AUT. The ratio between the two average power transfer
functions of the chamber in the two cases equals the ratio between the radiation efficiencies
of the reference antenna and the AUT. The radiation efficiency erad1

of the chamber-fixed
antenna does not need to be known because it will be the same both when measuring the
reference antenna and the AUT.

It is also possible to calibrate the chamber without having the AUT inside. However, then,
the reference antenna must also be removed when the AUT is measured. This is a simplified
procedure, because we can use the same calibration when measuring several AUTs, and in
particular it is simpler when measuring many active terminals. However, this simplified
procedure only works if the chamber is loaded so much that the reference antenna and AUT

does not represent any significant contribution to the ∆f of the chamber. If they do so, the
results of the measurements may be wrong, as the chamber transfer function does no longer
have a linear dependence on erad of the reference antenna, and the AUT. This may happen
in particular if the reference antenna or AUT are made of materials which absorb radiation
and thereby increase ∆f even when the antenna ports are open or short-circuited.

3.6.5 Frequency stirring on net transfer function

We have found that if we remove the free space mismatch factor from S21 in (3.38), we
get an average chamber transfer function that varies slower with frequency. This can then
be frequency stirred for better accuracy without losing resolution due to variations in the
mismatch factor. The free space input reflection coefficients of the two antennas can be
obtained by complex averaging of the S11 and S22 measured in the reverberation chamber,
as explained before. By removing the two mismatch factors we get the following formula for
the maximum available (or net) chamber power transfer function

Gchm =
1

N

∑
N

|Sc
21
|2

(1− |S11 |2)(1− |S22 |2)
, (3.41)

where N is the number of stirrer positions. This function can be frequency stirred to improve
accuracy.

23 It should be noted that here we have expressed the average power transfer function in terms of the
average mode bandwidth ∆f rather than in terms of the quality factor (Q) of the modes, which Hill used
in [18]. The reason is that the formula for ∆f is much more compact, because the different ∆f contributions
are additive, which Q contributions are not. Also, for specific chambers (at least loaded ones), the average
mode bandwidth will not vary much with frequency, and therefore the value of ∆f characterizes the chamber
better than Q, over a large frequency band.
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3.6.6 Number of independent samples & accuracy

In order to perform accurate measurements in the reverberation chamber we need the cham-
ber transfer function in (3.38) to be proportional to the radiation efficiency independent of
which antenna or terminal we use, like in Hill’s theoretical transmission formula. This is
possible only if the mode stirring creates enough independent samples. The S21 samples are
complex Gaussian distributed if the chamber is well stirred. Then, the relative accuracy by
which we can estimate Gchm has a standard deviation of [6]

σ = 1/
√
Nind , (3.42)

where Nind is the number of independent samples. This means that we need Nind = 100

for an accuracy of ±10 %, i.e., ±0.5 dB. Thus, it is crucial that we can obtain at least 100
independent samples by the mode stirring.

The number of independent samples is determined primarily by the mode density in the
chamber, i.e., by the number of modes per MHz. This is approximately given by the classical
formula

∂Nmod

∂f
= V f28π/c3 . (3.43)

The number of independent samples is proportional to the mode density, but the propor-
tionality constant is not known. It depends on chamber loading, mode stirring methods,
mechanical stirrer shapes, and chamber shape (at least for small chambers). However, we
can preliminary state the following approximate relation between the mode density and num-
ber of independent samples:

Nind ≤ 8

[
∂Nmod

∂f

]
(∆f +Bfs +Bmch) , (3.44)

where Bfs is the bandwidth of the frequency stirring, and Bmch is a mechanical stirring
bandwidth used to characterize the stirrers. The factor 8 is due to platform stirring and
is rooted both empirically and by physical reasoning. The latter argument goes as follows:
Each cavity mode can be written as a sum of 8 plane waves [23], and therefore we can get
8 times more independent samples than modes by moving the antenna or terminal under
test around in the environment, which we do by platform stirring. The ≤ sign in (3.44)
means that this is an upper bound when we have enough samples and the mechanical mode
stirring is sufficiently strong. A thorough study of uncertainties in reverberation chambers
using (3.44) and different loads to control ∆f can be found in [26].

A good reverberation chamber can provide measurements of efficiency-related quantities with
standard deviations better than 0.5 dB, and even approaching 0.1 dB [26] without doing any
frequency stirring. This requires that the chamber should not be loaded too heavily, i.e.,
∆f should be small compared to the frequency of operation. The problem with frequency
stirring Bfs is that the resolution becomes worse (resolution bandwidth increases), and then,
we cannot resolve variations in the radiation efficiency which are faster than Bfs. In practice
the resolution is somewhat better by using the mismatch correction to the transfer function
before power averaging, like in (3.41). The reason is that normally mismatch efficiencies
varies faster with frequency than efficiencies due to ohmic losses.
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3.7 Measurements in reverberation chamber

3.7.1 Calibration and characterizing multi-port antennas

The procedure for measuring a single- or multi-port antenna in a reverberation chamber is
briefly described as follows. The AUT is located inside the reverberation chamber in such a
way that it is more than 0.5 wavelengths from the walls and mechanical stirrers24. We also
locate a single reference antenna with known radiation efficiency far enough from the AUT

to avoid significant direct coupling25. We connect one of the AUT ports to a source, i.e., a
network analyzer, and terminate all the other ports and the reference antenna in 50 Ω. We
gather S-parameters between the port and the three chamber antennas (used for polarization
stirring) for all positions of the platform and the mechanical stirrers and for all frequency
points. The measurement procedure is then repeated for every antenna port, also with the
unconnected ports terminated in 50 Ω, for exactly the same stirrer positions and position
of the array inside the chamber. Thus, the field environment is exactly the same when
measuring every port. The complex transmission coefficients S21 between the connected port
and each of the three fixed chamber antennas, as well as the reflection coefficients S11 of
each of the chamber antennas and S22 of the array port, are stored for every stirrer position
and frequency point. Finally, we connect the reference antenna to the network analyzer and
perform the same measurements as for the array. During the reference measurements, the
AUT with all its ports terminated in 50 Ω must be present in the chamber. This is necessary
because the loading of the chamber (and thus the Q-factor) needs to be the same during the
measurements of both the reference antenna and the AUT. A further reason is that the AUT

itself loads the reverberation chamber considerably even when there is a lossy object such as
a head phantom inside the chamber26.

In a small chamber it is advantageous to use frequency stirring (averaging) to improve ac-
curacy. In such cases we correct the complex samples of S21 with mismatch factors due to
both S11 and S22 before the frequency stirring, see (3.41). We also normalize the corrected
S21 samples to the reference level corresponding to 100 % radiation efficiency. This is ob-
tained from the corrected S21 samples measured for the reference antenna, and its known
radiation efficiency. We refer briefly to these corrected and normalized samples of S21 as the
normalized S21 values. The normalized S21 values represent estimates of the channel matrix
H between the wall antennas and the AUT inside the chamber. Therefore, from the mea-
sured S-parameters the diversity gain and capacity can be obtained as explained in preceding
sections.

In the above explanations the MIMO channel is considered between the chamber antennas
and the multi-port AUT. It is of course also possible to locate two multi-port antennas inside
the chamber and measure the MIMO channels between the ports of these two antennas, and
evaluate them as a complete MIMO system.

24 For directive antennas longer distances will be needed in the main lobe direction.
25 For non-directive antennas a spacing of half to one wavelengths is sufficient.
26 A simplified procedure with only one antenna at the time in the chamber is described at the end of

Section 3.6.4. However, this is not recommended when measuring multi-port antennas.
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3.7.2 Radiated power, receiver sensitivity and data throughput

Complete mobile devices and cell phones can also be measured in reverberation chambers.
The total radiated power is readily measured as follows: first find the chamber transfer func-
tion in (3.41) by using a reference antenna with known efficiency. Next measure the radiated
power from the phone by connecting a spectrum analyzer or a wireless communication test
instrument to the chamber-fixed antennas.

Even more important for wireless internet and multimedia terminals is the receiver sensitivity,
because this will directly affect the time for downloading data. The receiver sensitivity is
characterized by the signal level needed to give a certain specified Bit Error Rate (BER), or
Frame Error Rate (FER) for CDMA systems. When averaged over many directions in the
radiation pattern, the limiting static signal level is referred to as the Total Isotropic Sensitivity
(TIS). An alternative in reverberation chambers is to measure BER/FER during continuous
fading to determine what is referred to as Average Fading Sensitivity (AFS) [27]. The AFS is
a more realistic performance parameter than TIS, and, it is much faster to measure. The TIS

and AFS are related to each other for the case of flat fading. Flat fading appears when the
signal bandwidth is much smaller than the coherence bandwidth of the multipath channel [26].
The research on measurements of active devices in reverberation chamber is reviewed in [28].
The modern LTE (i.e., 4G) systems are very flexible and allows for a dynamically changing
data rate. The reverberation chamber has been successively applied to measure data rate
throughput.

The work in [29] describes a simple ideal threshold receiver, which explains advanced digital
receivers very well. Using this, it is also possible to model throughput in RIMP that is in
agreement with what is measured in a reverberation chamber. We will in the next section
explain this useful threshold receiver and how it is used for modeling the throughput.

3.8 System modeling using digital threshold receiver

The LOS system has a simple path loss formula, known as Friis transmission equation27.
There exists also a simple average transmission formula for the RIMP environment, for the
special case when this is emulated in the reverberation chamber. This is referred to as Hill’s
equation (3.38). Real environments may also be RIMP, but the transmission formula is of
course very different in real-life multipath, because of all the scattering objects. Generally,
the received power level decays faster through a scattering environment than in free space.
Still the RIMP environment is relevant, and the reverberation chamber emulates its physical
properties. We can also remove the effect of the large additional attenuation by calibration
with a reference antenna with known total radiation efficiency.

In a modern communication system like the LTE 4G system, the quality of its wireless devices
is best characterized by their throughput. This is the data rate versus received power during
continuous fading for a fixed modulation and bandwidth. Therefore, it is important to be
able to perform repeatable quantitative measurements of throughput. We will here show how
this can be done by using a reverberation chamber, and we will also show how we can model
it by a simple threshold receiver model [29].

27 See Section 2.5.3.
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Figure 3.15: Illustration of measurement setup for measuring an LTE device in reverberation cham-
ber (left) and conducted (right). The device is here shown to be located inside a shielded box outside
the reverberation chamber. This makes it possible to use external antennas with known radiation
efficiency and correlation, so that we can model the effect of them. However, this is not necessary
when characterizing actual devices.

3.8.1 The digital threshold receiver

The modern digital receivers contains an RF28 receive amplifier and an analogue to digital
transformer. Let us connect a cable (thus, the conducted case) between a base station
emulator (i.e., a wireless communication test instrument) and a digital LTE receiver as shown
to the right in Fig. 3.15. This corresponds to the stationary case of no fading, referred to by
the term Additive White Gaussian Noise(AWGN ) in propagation and wireless communication
system literature. Then, we observe throughput curves that are very steep, almost like a
threshold, see Fig. 3.16. The threshold varies linearly with the system bandwidth. Therefore,
system modeling during fading is simplified a lot by introducing an ideal theoretical threshold
as shown by the dashed curves in the same graph. Thus, if we know the threshold Pt, we
have for the conducted case

TPUTcon(P ) = TPUTmax

{
0 when P < Pt
1 when P > Pt

, (3.45)

where P is the maximum available power at the port of the receiver, and TPUTmax is the
maximum throughput.

When we locate the digital threshold receiver in a dynamic fading environment, we observe
throughput variations due to this threshold. Sometimes the received level is above the thresh-
old and otherwise not, even if the transmitted power is constant. This variation depends on
the CDF of the channel. Actually, the relative throughput becomes equal to counting the
number of observations that the instantaneous power (i.e., channel) is above the threshold,
compared to the total number of observations. Therefore, the relative throughput becomes
equal to the Probability of Detection (PoD) , i.e., the complement of the outage probability.

28 RF is an abbreviation for Radio Frequency.
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Figure 3.16: Measured (solid) and theoretical (dashed) throughput curves for an LTE device for the
conducted AWGN case, i.e., when a cable is connected to the receiving port of the wireless device.
The theoretical curves represent the threshold model.

We can express these relations as follows

TPUT(Pav) = TPUTmaxPoD(Pav/Pt) = TPUTmax {1− CDF(Pt/Pav)} , (3.46)

where Pav is the maximum available average received power in the environment, and the
CDF is the CDF of the channel. The maximum available average received power is found by
i) calibrating the chamber with a single-port reference antenna to find the average transfer
function, ii) normalizing this average by the total radiation efficiency of the reference an-
tenna, and iii) multiplying this normalized average with the fixed transmitted power. The
normalization corresponds to using a reference antenna with 100 % total radiation efficiency,
and thereby get the maximum available average received power. The CDF changes depending
upon the signal processing, and therefore we can model the corresponding TPUT improve-
ment if we know the processing algorithms. We have already introduced the MRC algorithm
for antenna diversity, and we will now show how this also can be used to model the Orhogonal
Frequency Division Multiplexing (OFDM ) in the LTE system.

3.8.2 Modeling OFDM in LTE 4G system

Previous wireless communication systems suffered from irreducible bit errors if the environ-
ment had strong fading with long time delay spreads, i.e., a small coherence bandwidth29.
The 4G LTE system is benefitting a lot from the OFDM, which represents diversity in the
frequency domain. If we have a fading null at one frequency, we can instead benefit from a
strong level at another frequency, providing the system bandwidth is larger than the coher-
ence bandwidth. The coherence bandwidth is in a reverberation chamber equal to the average
mode bandwidth, and it has a specific inverse relation to the time delay spread [30]. It is
possible to achieve realistic coherence bandwidths in a reverberation chamber.

The OFDM is realized as a spectrum of narrow frequency bands. Each band is narrower than
normal real-life coherence bandwidths to avoid irreducible bit errors. Together the spectra

29 The descriptors of the environment is overview in [28].
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Figure 3.17: Theoretical (a) and measured (b) throughput curves for different system bandwidths
and coherence bandwidths of the RIMP (i.i.d.) environment.

of narrow bands make up the system bandwidth. The different OFDM bands are in principle
combined by using the MRC algorithm, i.e., by estimating the channels in each band, weight
the signal in each band by the estimates, and add them. Thus, this corresponds to diversity
in the frequency domain, or simply frequency diversity. We get an SNR improvement if some
part of the system bandwidth contains uncorrelated frequency channels. We will model the
relative number of uncorrelated frequency bands by

Nfd = NINT

(
Bs
Bc

)
, (3.47)

where NINT is a function taking the nearest integer of its argument, Bs is the system band-
width and Bc is the coherence bandwidth. Thus, we get a higher diversity order the larger
the Bs/Bc is.

3.8.3 Theoretical and measured results for i.i.d. diversity case

The threshold model has been used to produce theoretical throughput curves by using a) the
measured thresholds in Fig. 3.16, and b) the formula for the frequency diversity in (3.47).
The results are plotted for three different system bandwidths and coherence bandwidth in
Fig. 3.17a, and the corresponding measured curves in 3.17b. The measurements have been
done in a reverberation chamber. We see that the simple threshold receiver can model very
accurately the throughput measured in a RIMP environment. The throughput curves corre-
sponds to the i.i.d. case30, which we have achieved in the measurements by using i) external
uncoupled antennas on the device, and ii) the emulated RIMP environment of the reverber-
ation chamber. Similar curves can be found in [31]. The threshold receiver model shows
similar agreement with measured throughput for 2-port diversity antennas, see Fig. 3.18 but
note the different efficiencies of the theoretical and measured curves to make them easier

30 See Section 3.1.3.
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Figure 3.18: Measured (solid) and theoretical (dashed) OTA LTE throughput for 2 × 1 MIMO
system (also called SIMO) with externally connected antenna for different LTE system bandwidths
and coherence bandwidths. The measured results are for lossy antennas with efficiency of −4 dB
while theoretical results are for 0 dB efficient antennas.

to distinguish. Such throughput data rate curves for the i.i.d. case are well known in com-
munication theory, and they can also now be used to characterize commercial LTE devices
by measurements in RIMP. The curves represent i.i.d. curves, which means that the perfor-
mance will be worse for practical implementations of the antenna hardware (due to embedded
radiation efficiencies and correlation) and the MIMO and OFDM algorithms.

The threshold receiver has till now only been used for RIMP environment, but it is very
useful for producing throughput curves also in other environments, if the statistics of the
environments are known. The relative throughput is also equal to a PoD, see (3.46), which
makes it very easy to understand and extend, such as to modeling higher level system char-
acteristics on the overall network level. The relation between the CDF and the PoD can be
seen in Figure 3.19 for RIMP including both antenna diversity and OFDM.

The theories presented here are shown only for single bitstreams, i.e., diversity. Extensions
to more bitstreams are described in the next section (see also [32]-[33]).

3.9 MIMO multiplexing to obtain multiple bitstreams

This section deals with the multi-bitstreams case (i.e., spatial multiplexing). In order to use
the throughput model in (3.46) we need to diagonalize the channel matrix for each channel
realization, i.e., at each instance of it, to determine the SNR of each bitstream at each
realization of the channel. Thereafter, we obtain the CDF of the signal of each bitstream
by observing the SNR over several realizations, i.e., over several instances such as over an
observation time interval, or over a distribution of users. The receiver will usually estimate
the channel via a training sequence, and this Channel State Information (CSI ) may or may
not be available to the transmitter. The CSI cannot be transferred to the transmitting side
if the coherence time of the fading is too short. Then, the required short intervals of the
feedback will cause too large overhead on the capacity. Nevertheless, for Time Division
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Figure 3.19: Theoretical CDF (left) and PoD (right) for the same channel matrix and i.i.d. case.
The effect of the antenna diversity (difference between 1× 1 and 2× 1 curves) and the OFDM can
clearly be seen in both curves. The diversity gains are illustrated at 1 % level in the CDF graphs.
Similar diversity gains can be found at 99 % level in the PoD graphs, but it is better then to read
the diversity gains at 10 % level, which has better accuracy.

Duplex (TDD) system the channel will satisfy reciprocity so that the CSI will be known on
the transmit side without any feedback. Depending on the availability of the CSI on the
transmitting side, the MIMO diagonalization can take different forms, which we will discuss
in the following subsection.

3.9.1 Diagonalizing the channel matrix

For the case when only the receiver knows the CSI, we will assume that the transmitter
transmits each bitstream on different ports of the transmitting antenna. Then, we also assume
that the diagonalization is done by processing using the Zero-Forcing (ZF ) algorithm [34],
as illustrated in Fig. 3.20. For each OFDM subcarrier the MIMO channel is assumed to be
flat in the same way as in Section 3.8.2, i.e.,

y = Hx + n , (3.48)

where H is the MIMO channel matrix at the subcarrier frequency, x and y are the transmitted
and received signal vectors (i.e., linear matrices), respectively, and n is the noise vector with
independent identically distributed (i.i.d.) Gaussian elements with a variance of unity31.
Note also that we do not use any index for the subcarrier in the flat channel model in (3.48),
just of notational convenience. Let now hi be the ith column of H and xi be the ith element
of x, where i = 1, ..., Nt (with the number of transmit antennas denoted as Nt). Then, (3.48)
can be rewritten as

y = hixi +
∑
j 6=i

hjxj + n . (3.49)

31 The notation in (3.48) is in agreement with the common notation in MIMO literature, so we adopt it
here even though it does not fit well to the common antenna theory notation. Thus, the vectors in (3.48) are
linear matrices not representing geometrical positions in three-dimensional space.
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Figure 3.20: ?Illustration of a 2×2 MIMO system with ZF receiver and two transmitted bitstreams.

The first term in the right side of (3.49) corresponds to the ith (intended) bitstream, and
the second term represents the interference with respect to the ith bitstream caused by all
the other bitstreams. A ZF receiver projects the ith stream into the subspace orthogonal
to the one spanned by h1, ...,hi−1,hi+1, ...,hNt . Note that this projection can be done for
any numbers of bitstreams up to the rank of the channel matrix. The rank depends on
how independent the different rows of the channel matrix are, or rather how uncorrelated
they are when observed over several channel realizations. When the CSI is known at both
transmitting and receiving sides, the MIMO channel diagonalization can be done via normal
Singular Value Decomposition (SVD). Then, we need to apply beamforming (i.e., precoding)
on the transmitting side in addition to a decoding on the receiving side, and the results are
that each bitstream will correspond to a distinct eigenmode of the MIMO channel matrix [34].
Let the SVD of H be

H = UΛVH , (3.50)

where U and V are the unitary matrices, and Λ is a diagonal matrix consisting of the singular
values of H. Then, the precoding and power allocation (distribution of signal power between
the two bitstreams) is done by multiplying the signal vector s by VP, i.e., x = VPs, where
P is a diagonal matrix whose elements correspond to the allocated power for each bitstream.
The decoding is done by multiplying y by UH , r = UHy. The resulting parallel MIMO

channels are then the rows of this matrix equation

r = ΛPs + z , (3.51)

where z = UHn. Note that s and z have the same statistics as x and n, respectively, because
V and U are unitary matrices. Depending on the power allocation matrix P, different
performance can be achieved (please refer to [34] for details).

The data rate throughput can be modeled for the i.i.d. case in the same way as for single
bitstream with MRC algorithm. The CDF is determined by assuming a Gaussian channel,
and we apply the threshold receiver to each instance of the two bitstream channels. The
OFDM is included with MRC algorithm making the CDF steeper32. The throughput for a
given number of bitstreams is then obtained as the throughput of all bitstreams when all of
them have enough signal level to come above the threshold. Therefore, the throughput of
two bitstreams will improve for this case of fixed number of bitstream, by allocating more
power to the weakest bitstream channels, so that they all reach the threshold at the same
time for each realization. This is referred to as inverse power allocation, see next subsection.
This inverse scheme is a result of a practical constraint with a fixed receiver threshold (this

32 Section 3.8.2 deals with modeling OFDM (frequency diversity).
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change in steps when system bandwidths is changed). In Shannon’s formula there is no
such practical constraints, and then the optimum is to allocate more power to the strongest
bitstream channel. This latter is in communication systems literature referred to as water-
filling power allocation.

The resulting beams on the transmitting side (for SVD only) and on the receiving side (for
both ZF and SVD) can be plotted as radiation patterns, in the same way as for the MRC

single-beam case in Fig. 3.8. However, they become very difficult to interpret in scattering
environments with many waves present. They also depend very strongly on the phase rela-
tions between the incoming waves, like for the MRC case. We therefore omit presenting such
patterns here, and instead present the modeled and measured throughput in RIMP for the
2-bitstream 2× 2 MIMO case in the next section.

3.9.2 Measurements of two bitstreams in reverberation chamber

We will here show measurements of the throughput for a 2-bitstream case by using both
ZF and SVD algorithms. For the MRC case we showed measurements on a commercial LTE

device and the agreement with the modeling in RIMP was good, even though the algorithm
actually used in the commercial devices was not known. We will now show 2-bitstream
results achieved when we have full control of the algorithm used in the measurements. This
is possible with Software-Defined Radio (SDR), and we use a commercial SDR system by
which we can use LabVIEW for the programming of the algorithm.

The sampling rate was set to 400 kHz and each symbol was selected as 8 samples, resulting
in a symbol rate of 50k symbols/s. This allows for a maximum bit rate of 100 kbps with gray
coded Quadrature Phase Shift Keying (QPSK). However, due to a large packet overhead,
the achievable bit rate was only 33 kbps. The systems settings were operating frequency of
915 MHz, a root raised cosine as the pulse shaping filter with a roll off factor of 0.5 and
a length of 6, and a system bandwidth of 75 kHz. The latter, is much smaller than the
3.5 MHz coherence bandwidth for the measurement setup in the Reverberation Chamber
(RC) [7]-[8]. The used RC has a size of 1.75 × 1.80 × 1.25 m3, and is equipped with two
translating plate stirrers with sizes of 0.97 × 0.40 m2 and 0.88 × 0.30 m2, respectively, and
a turntable platform with a diameter of about 0.6 cm. It is shown in Fig. 3.13 and was
used also for the measurements in Section 3.8. Both transmitting and receiving antennas
are wideband triangular-shaped monopole antennas that are orthogonally polarized with
sufficient separation to ensure no correlation. The stirrers in the RC run stepwise to 300

positions, and at each stirrer position 200 packets are sent. The measurements are performed
over the power range of −60 dBm to −90 dBm. Fig. 3.21 shows the simulated and measured
throughputs of 2× 2 MIMO systems using the SDR device and reverberation chamber [33]. It
shows the relative throughputs of the SVD-based 2 × 2 MIMO systems both with equal and
inverse power allocation between the two bitstreams. As a reference, we also plot the relative
throughput of the 2 × 2 ZF-based MIMO system in the same figure. The solid curves in the
figure represent measured throughput and the dashed curves correspond to the simulated
throughput using the throughput model. There is good agreement between measurements
and simulations. Furthermore, we see that, without the inverse power allocation, the SVD-
based MIMO throughput for a fixed MCS is even slightly worse than that of the ZF-based
MIMO. The reason is that with SVD, the best eigen-channel is better than for the ZF-case,
but the worst eigen-channel is worse (and the probability of detecting two streams equals



115 CHAPTER 3. CHARACTERIZATION IN MULTIPATH

−85 −80 −75 −70 −65 −60 −55
0

10

20

30

40

50

60

70

80

90

100

Received power (dBm)

R
e

la
ti
v
e

 t
h

ro
u

g
h

p
u

t 
(%

)

 

 

ZF

SVD (equal power allocation)

SVD (inverse power allocation)

Figure 3.21: ?Measured (solid curves) and theoretical (dashed curves) throughputs of ZF- and
SVD-based 2× 2 MIMO system with and without inverse power allocation.

that of detecting the worst one, when the data rate is fixed).

The normal water-filling power allocation technique puts more power on the best eigen-
channel and less in the worst one. Therefore, the relative throughput of an SVD-based MIMO

system with water-filling technique will be even worse than the equal power allocation case.
Therefore, the water-filling technique is not used in practical systems such as LTE. We see
from Fig. 3.21 that the SVD-based MIMO with the inverse power allocation is about 2.5 dB

better (in terms of power cost) than that without power allocation and about 1.5 dB better
than the ZF-based MIMO system. The results also show that the measurements in reverbera-
tion chambers are equal to the i.i.d. case if the antennas are uncoupled. Uncoupled antennas
makes the received single amplitudes uncorrelated in RIMP according to (3.13).

3.9.3 Quality of throughput in terms of MIMO efficiency

The quality of reception in RIMP of a single bitstream was in Section 3.4 characterized
in terms of a diversity gain. This is the improvement in dB of the CDF relative to the
Rayleigh-distributed CDF received on an ideal reference antenna. The improvement will in
practice be reduced, due to correlation and the embedded element efficiency as explained in
Section 3.4.4. Such degradation can be quantified by a diversity-efficiency in dBiid , i.e., the
level of the achieved CDF at a certain CDF level relative to the CDF of the i.i.d. case. The
multi-bitstream case can similarly be quantified by an MIMO efficiency in dBiid. We will not
give details here, but refer to [35].
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3.10 Example: Polarization diversity and multiplexing
in LOS

We will here show a simple LOS example that illustrates the difference between diversity gain
and multiplexing efficiency. We choose a very clean case when there are two antennas locating
in free space and pointing towards each other. Each of the antennas has two orthogonal
linearly polarized ports, but the polarizations on the transmitting and receiving sides are not
aligned with each other. Then, we will show how the different diversity and MIMO algorithms
handles this case.

3.10.1 Single bitstream

Let us first use only one port on the transmitting and receiving sides. Assume that the
polarizations corresponding to these ports are p̂t1 on the transmitting side and p̂r1 on the
receiving side. Then, the channel value that corresponds to the received voltage on the
receiving port, will be33

h11 = p̂r1 · p̂t1 = cos(φ0) , (3.52)

where φ0 is the angle between the polarization vectors of the transmitting antenna (incident
wave) and the receiving antenna, and where we have normalized the channel value to its
maximum value for aligned polarizations. For an arbitrary polarization, φ

0
will be distributed

uniformly between 0◦ and 360◦, but we can reduce this to the interval 0◦ to 90◦ by using the
symmetric properties of | cos(φ0)|. Then, we can use probability theory to determine the CDF,
which becomes

CDF = 1− arccos(|h11|)(2/π) .

This is plotted versus h11 in dB in Fig. 3.22. Alternatively, we could evaluate (3.52) in dB for
N uniformly distributed values of φ0 on the interval 0◦ − 90◦ and produce the CDF directly
from these values. We see from Fig. 3.22 that there is a 20 % probability of levels being more
than 10 dB below the maximum level, and a 10 % probability of levels being lower than 16 dB

below the maximum.

Consider now the case of two receiving antenna ports with orthogonal polarizations p̂r1 and
p̂r2 . Then, the received voltage on the two receiving ports will be

h11 = p̂r1 · p̂t1 = cos(φ
0
) and h21 = p̂r2 · p̂t1 = cos(φ

0
+ 90◦) = sin(φ

0
) . (3.53)

The optimum weights become by using the MRC algorithm the same as the channels them-
selves, because the channels are real. Thus, by adding the two weighted channel values the
received combined voltage becomes (according to (3.14))

h
MRC

= cos2(φ
0
) + sin2(φ

0
) = 1 . (3.54)

Therefore, by using a 2-port dual-polarized receive antenna, we get a constant received signal
in LOS independent of the polarization of the transmitting antenna. Thus, the MRC algorithm
automatically combines the two polarizations on the receiving side to that of the incoming
wave. Thus, we have got a polarization diversity gain in LOS of 16 dB at the 10 % CDF

33 According to the equivalent circuit in Fig. 2.22 where we have normalized to the case when the two
polarizations are aligned.
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Figure 3.22: CDF of the received voltage at the port of a linearly polarized antenna receiving an
incident wave of arbitrary linear polarization. If two orthogonally polarized receive antenna ports
are used, the MRC algorithm gives a constant received level, i.e., the CDF is a vertical line at the
0 dB level.

level, and 10 dB at the 20 % CDF level, by using MRC in combination with a dual-polarized
receiving antenna, see Fig. 3.22. This is a much larger diversity gain that what we have in
RIMP environment with normal fading.

3.10.2 Two bitstreams

Let us now use the second port of the transmitting antenna to generate one more bitstream.
Then, the four channels making up the channel matrix become (see Fig. 3.23)

h11 = p̂r1 · p̂t1 = cos(φ11) , h12 = p̂r1 · p̂t2 = cos(φ12) ,

h21 = p̂r2 · p̂t1 = cos(φ21) , h22 = p̂r2 · p̂t2 = cos(φ22) .
(3.55)

 𝑝𝑟2

 𝑝𝑟1

 𝑝𝑡2

 𝑝𝑡1

𝜙22

𝜙11

𝜙12

𝜙21

 𝑝𝑟1 ⊥  𝑝𝑟2

 𝑝𝑡1 ⊥  𝑝𝑡2

Figure 3.23: Illustration of polarizations of transmitting and receiving antennas.
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The optimum excitation (i.e., weight) for receiving bitstream 1 with MRC will be (see Fig. 3.7
and (3.14))

w11 = h∗11 = p̂r1 · p̂t1 = cos(φ11) , w21 = h∗21 = p̂r2 · p̂t1 = cos(φ21)

and correspondingly for bitstream 2

w12 = h∗12 = p̂r1 · p̂t2 = cos(φ12) , w22 = h∗22 = p̂r2 · p̂t2 = cos(φ22) .

This gives then the two combined received voltages

hb1 = h11 · w11 + h21 · w21 = cos2(φ11) + cos2(φ21) = 1 ,

hb2 = h12 · w12 + h22 · w22 = cos2(φ12) + cos2(φ22) = 1 .

The reason both becomes unity is the same as for (3.54), i.e., the two polarizations on the
transmitting side are orthogonal so that φ11 and φ21 are separated by 90◦, as well as φ12 and
φ22. The interference between the two bitstreams is determined by

hb1 = h11 · w12 + h21 · w22 = cos(φ11) cos(φ12) + cos(φ21) cos(φ22) = 0 .

The reason of the zero value is that φ11 and φ21 are separated by 90◦, as well as φ11 and φ22

equal. Thus, for this special case it worked to use MRC twice to determine the bitstream
channels.

Thus, the MRC algorithm is able to ideally decouple any two orthogonal linearly polarized
incoming waves, provided we use orthogonal linearly polarized receive antennas with the
same directive gain for both polarizations. We get two ideal CDFs of the same level, but we
have increased the power by a factor two when introducing the second polarization.

This ideal transmission of two bitstreams would not have worked if the two receiving antennas
had not been orthogonal. Then, we have to use the ZF algorithm in order to decouple
them, and the CDF performance would degrade. If the transmitting antennas had not been
orthogonal, we could have used SVD to decouple the channels with best performance, but
that would have required even a processing of the excitations on the transmitting side.

3.11 Antennas for use on handsets

The antennas that are used on handsets can be of any type. The most important is that they
can be miniaturized. The size fundamental size limitations on small antennas are treated
in Chapter 11. The smaller they are the more narrow bandwidth. We will not explain any
examples of small antennas in this textbook, because there are so many of them. They
are known under names such as inverted-F antennas, Planar Inverted-F Antennas (PIFAs),
dielectric resonator antennas. The inverted-F antenna can be made of metal wires or strips.
The PIFA is a half microstrip patch antenna grounded at the end34. Many small antennas
are reviewed in [36].

The mutual coupling analysis of multi-port small antennas are important, because the corre-
lation in RIMP decrease if the mutual coupling decrease as already seen from equation (3.13).
Several techniques exist to reduce it in order to reduce the mutual coupling between small
antennas, such as those in [37]-[39].

34 See also the reference list of Chapter 6 about microstrip antennas.
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3.12 Exercises

1. Diversity gain from S-parameters: The diversity gain can be found from the S-parameters
of lossless 2-port antennas. Eq. 3.13 requires that we also know the phase of the S-parameters,
but often we do not know that. Use the S-parameters in Fig. 3.6 for 0.1λ and 0.4λ spacing
between the two dipoles, and the results in Fig. 3.9 to determine what the phase of S∗

11
S21

must be. The two dipoles are identical.

We now assume that the two dipoles are fed by coaxial cables with 0.5 dBloss. If the S-
parameters were measured with these cables, what is then the effective diversity gain?

2. Radiation patterns of MRC arrays: Look at the far-fields of short slots in Chapter 5,
and modify the equations in Section 3.4.2 for the case that the two slots are oriented along
the x-axes. Make a small Matlab program and see how the new element pattern affects the
far-field of the 2-port arrays when MRC is used for the same incident wave examples as in
Section 3.4.2. Make simulations also for a larger array of 4 ports. What can we say about the
main lobes of the radiation patterns when we have 1, 2, 4 and 6 incident waves? Change the
phases of the waves and observe how the lobes change.

3. Diversity gain from incomplete CDFs: We need to have almost 1000 samples of the
channels in order to have a reasonable accuracy of the CDF at 1 % level. This takes a long
time to measure, and if we do not have the far-field patterns we cannot simulate it either.
Also, most small antennas for mobile phones are quite lossy, so we cannot use the simpler S-
parameter equations. An alternative is then to measure the embedded total radiation efficiency
and the correlation, and to estimate the diversity gain from the equations in Section 3.4.4.
The reason is that the embedded efficiency and the correlation converges much faster than the
CDFs at 1 % level. Make a simulation of two CDFs and determine the difference in accuracy
as a function of the number of samples for both approaches. Compare the uncertainty of the
diversity gain with the uncertainty of the estimate of the average power level of the CDF,
see (3.42) in Section 3.6.6.

4. Average power transfer function in reverberation chamber: Hill’s formula (3.38)
describes the average power transfer function in a reverberation chamber. Use Matlab and
plot Hill’s formula as a function of frequency for the reverberation chamber in [26] for different
mode bandwidths. You will in [26, Table I] find mode bandwidths between 1 and 10 MHz
obtained by different loadings of the chamber. Plot also the free space attenuation from one of
the wall antennas to the AUT when you assume that the distance is half the largest chamber
width. How much larger is the transfer function through the chamber than the free space
attenuation at 1 GHz for 1 MHz, 5 MHz and 10 MHz average mode bandwidths?

5. Polarization diversity and multiplexing in LOS: The diversity by MRC combination and
MIMO multiplexing concepts are very easy to illustrate and understand for directive antennas
in Line-Of-Sight (LOS). Consider the same as in Section 3.10, i.e., two antennas pointing
against each other and both being located in the far-field of each other. Note that some of the
points below were treated already in Section 3.10, but we have extended them with circular
and non-orthogonal polarizations.

a) Let the two antennas be linearly polarized, and let the polarizations of both antennas be
aligned. Write the expression for the transferred power between them. Take then and rotate
the polarization of one of the antennas. Plot the received power level in dB relative to the
maximum, i.e., the reference level.

b) Assume that the transmit antenna is circularly polarized. What is now the received power
in dB relative to the maximum in a) when the transmit antenna is rotated around the pointing
axis towards the receiving antenna?

c) The level variation in a) is representative for the case when the polarization of the incident
wave on the receiving antenna is random. Introduce now a 2-port antenna on the receiving
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side, and combine the two ports with the MRC algorithm. How does now the received power
vary with rotation angle of the transmitting antenna, for the cases in a) and b)? Use the same
reference level as before.

d) Introduce now a 2-port antenna also on the transmitting side. The two ports excite
orthogonal linear polarizations. Divide the transmitting power between the two ports. Use
the MRC algorithm to combine all four channels. What is not the received power variation
for the cases in a) and c)?

e) Repeat d) when the polarizations of the two receiving antennas are not orthogonal, with
an angular error of ∆Φpol. How does now the received power vary?

f) Repeat d) and e), when the ZF algorithm is used, to generate two bitstreams.
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Chapter 4

The theory of radiation from
current sources

The purpose of this chapter is to introduce Maxwell’s equations, which govern radiation, scat-
tering and propagation of electromagnetic fields. We will also present some general concepts
which facilitate the use of these equations such as the equivalence and imaging principles.
We will emphasize the integral form of Maxwell’s equations from which radiation fields from
known current distributions can be directly calculated. The integrands are expressed in terms
of vector dyadic Green’s functions for sources in free space, which make the notation more
compact and easier to interpret. The equivalence principle allows us to introduce equivalent
sources, making the vector dyadic Green’s functions even more usable. The term Green’s
function is commonly used to denote a point source response.

In most of the calculations in this book, we treat antennas under the presumption that
we know approximately the physical or equivalent current distributions. Therefore, we can
use the vector dyadic Green’s functions to find the radiation fields by direct analytical or
numerical integration over these currents. For the antennas in this book, this approach
is quite accurate if the dimensions are within the limits where the approximate current
distributions are valid.

Advanced antenna design involves calculation of the actual current or field distributions.
This is normally done numerically (e.g., by the Method of Moments). We will in the last
section of this chapter introduce the basics of the Method of Moments. This will be useful
in later chapters to derive formulas for the self-impedances of dipoles, slots and microstrip
antennas using only one or two expansion functions. These formulas lead to the classical
impedance formulas for dipoles and slots.

4.1 Maxwell’s equations

We introduce Maxwell’s equations for time-harmonic fields and the standard boundary condi-
tions that apply to these fields at material interfaces. We also describe the related “soft” and
“hard” boundary conditions that are commonly used in acoustics and in diffraction theory.
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They facilitate the interpretation of electromagnetic field behavior in the vicinity of some
material boundaries. Furthermore, we introduce the electric and magnetic vector potentials
and the related integral forms of Maxwell’s equations. These vector potentials are commonly
used in the antenna theory, and therefore must be studied. However, we will not use them
in this book. Instead we introduce the alternative direct vector integral forms of the E- and
H-fields in Section 4.2, and continue using these in the rest of the book. These forms are
often referred to as dyadic Green’s functions and are derived in Appendix A.

4.1.1 Differential form

The original Maxwell’s equations contain time-differentiation of the electric and magnetic
fields. However, for linear materials and harmonic time variation, these differentiations can
be replaced by the factor jω. This gives the following time-harmonic form of the four basic
Maxwell’s equations for single-valued, smooth, bounded fields:

∇×E = −jωB−M , (4.1)

∇×H = jωD + J , (4.2)

∇ ·D = qe , (4.3)

∇ ·B = qm , (4.4)

where J and M are associated electric and magnetic source current densities representing the
sources of the E-, D-, H- and B-fields, and qe and qm are the electric and magnetic charge
densities. These basic equations contain four different fields; the electric field E, most simply
referred to as the E-field, the magnetic field H referred to as the H-field, and two proportional
D- and B-fields, respectively, that only play a role in specific materials. Therefore, we will
not treat D- and B-fields explicitly in this text, but only implicitly via their relation to the
E- and H-fields in (4.6) and (4.7) below.

The so-called charge continuity equation can be derived from (4.2) and (4.3) to be

∇ · J = −jωqe , (4.5)

and correspondingly for magnetic currents and charge densities. The magnetic source currents
and charges do not exist in reality, and they were not included in the original Maxwell’s
equations. But modern field calculations are considerably simplified by using equivalent
magnetic currents.

The D- and B-fields are functions of the E- and H-fields. For fields in linear and isotropic
media, they are simply proportional to them:

D = εE , (4.6)

B = µH , (4.7)

where ε is the permittivity and µ is the permeability of the medium at the point where fields
are being considered. It is most common to work with the relative material parameters which
are defined by the relations

ε = εrε0 , εr = ε′r − jε′′r , (4.8)
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µ = µrµ0
, µr = µ′r − jµ′′r , (4.9)

where εr is the relative permittivity and ε
0

is the permittivity in free space, and where µr
is the relative permeability and µ

0
is the permeability in free space1. For lossy media the εr

and µr are complex-valued, with the imaginary parts ε′′r and µ′′r representing losses.

In conducting materials, the following relation is valid inside the material,

J = σE , (4.10)

where σ is the conductivity of the medium in Siemens/meter (S/m).2 In the time-harmonic
form of Maxwell’s equations (see (4.2)), it is possible to represent σ as an imaginary part ε′′r
of εr, and visa versa, by using

σ = ωε
0
ε′′r , or alternatively σ = ε′r · tan δ/(60λ) ,

where λ is the free space wavelength defined on page 131, and tan δ = ε′′r /ε
′
r is called the

loss tangent or loss factor. The latter expression of σ is obtained from the first one by
using (4.29)3. In this book we will only treat Perfect Electric Conductors (PEC s) for which
σ → ∞. Most conductors can be approximated as PECs in antenna problems provided
they are thicker than the penetration depth of the fields for the conducting material. The
penetration depth (also called skin depth) can be derived for plane wave incidence on planar
interfaces of good conductors [1] to be

τ =

√
λ

πησµr
, (4.11)

where η =
√
µ0/ε0 = 377 Ω is the free space wave impedance4.

The material parameters usually have different values in different frequency bands (i.e., they
exhibit discontinuities). They can be found tabulated in handbooks (e.g., in [2]). Some
sample values are given in the tables in Appendix D. These tables also include corresponding
propagation losses or penetration depths at different frequencies. Note that the D- and B-
fields are of no importance in antenna analysis due to the simple material relations. We do
not use them in this book.

4.1.2 Standard boundary conditions

The boundary conditions that apply to the electromagnetic fields on material interfaces can
be derived from Maxwell’s equations. Here we simply state them. We assume that

n̂× (E2 −E1) = −M
S
, n̂× (H2 −H1) = J

S
, (4.12)

where E1 and H1 are the fields in region 1, E2 and H2 are the fields in region 2, n̂ is
the normal vector to the interface pointing into region 2, and JS and MS are the electric

1 Note that we never need the values of ε0 and µ0 explicitly, because they will always in this text enter
the equations via η and c, see (4.29).

2 Siemens = 1/Ω.
3 Note that η = 377Ω ≈ 120πΩ, which is a convenient form to use.
4 Note that η = 377Ω ≈ 120πΩ, which is a convenient form to use.
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Figure 4.1: The boundary conditions between two regions filled with different materials, (a) Two
dielectric regions, (b) PEC in region 1, (c) PMC in region 1.

and magnetic surface current densities at the boundary between these regions (see Fig. 4.1).
These boundary conditions are written in vector form. What they actually state is that if
the tangential components of E and H are discontinuous at a surface, the discontinuity must
be equal to the surface current densities MS and JS , respectively.

At the surfaces of dielectric and magnetic materials there can be no physical currents, so we
get

n̂× (E2 −E1) = 0
n̂× (H

2
−H1) = 0

i.e.,
(E2 −E1)tan = 0
(H

2
−H1)tan = 0 .

(4.13)

These conditions mean that the tangential E- and H-field components are continuous. More-
over, inside a PEC all fields are zero, and at its surface there can only exist electric currents.
Therefore, if region 1 is a PEC, we get from (4.12)

n̂×E
2

= 0 , n̂×H
2

= J
S
, (4.14)

which means that the tangential E-field is zero at the PEC, and that the tangential H-field
equals the surface current density. Magnetic conductors do not exist naturally, but sometimes
they are convenient tools in electromagnetic analysis. Therefore, it is important to know that
the boundary conditions on a hypothetical Perfect Magnetic Conductor (PMC ) are

n̂×E
2

= −M
S
, n̂×H

2
= 0 , (4.15)

which means that the tangential H-field is zero. Inside PMCs all fields are zero, in the same
way as for PECs.
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Figure 4.2: Short-circuited nonradiating electric current source on PEC, and radiating magnetic
current source on the same PEC.

4.1.3 Impressed current sources on PECs

Consider an impressed incremental electric current source Ji = I0δ(r − rS )t̂ located tangen-
tially at a point r

S
at the surface of a PEC of arbitrary shape5, see Fig. 4.2. This will induce

electric currents on the PEC in such a way that the boundary conditions of the PEC are
satisfied, i.e., n̂×E = 0 at the surface and E = H = 0 inside the PEC.

Let us assume that the induced electric current is given by

J
S

= −Ji = −I
0
δ(r− r

S
)t̂ . (4.16)

This makes the total current
Jtot = Ji + J

S
= 0 , (4.17)

which means that the total field is zero as well, because there is no source for the fields. This
clearly satisfies the boundary conditions. Therefore, according to the uniqueness theorem6,
the solution to the field problem is the null-field. Note that the above argumentation is valid
for PECs of any shape, and it has nothing to do with imaging7.

We often express (4.17) as the impressed electric source current being short-circuited when
located tangentially at a PEC. This expression probably came from practical half-wave electric
dipole antennas. When they are located on a ground plane in direct metal contact with it,
the voltage over the feed gap is short-circuited and no radiating currents are induced.

Consider now a magnetic source current Mi = M0δ(r−rS )t̂ located tangentially on the surface
of the same PEC. This will also induce electric currents on the PEC in a way that the boundary
conditions are satisfied. This situation presents a difficult field problem that normally must
be solved numerically, except for some special cases. Such a special case exists when the PEC

is a plane, in which case an analytical solution exist. For the plane PEC case, the induced
electric currents that make the total field satisfy the boundary condition are JS = n̂ × Ht

where Ht is the H-field caused by a magnetic current source, Mt = 2M0δ(r− rS )t̂, radiating
into homogeneous space (i.e., the H-field caused by Mi and its image Mimg = Mi)8. Note
that the E- and H-fields never vanish when a tangential magnetic current is located on a

5 δ(r) = δ(x, y, z) is the three-dimensional delta function.
6 The uniqueness theorem can be found in Section 4.3 on page 136.
7 Imaging can be found in Section 4.6 on page 150.
8 For more details about imaging see again Section 4.6 on page 150.



4.1. MAXWELL’S EQUATIONS 128

PEC, because only electric currents can be induced at the PEC surface. There is no way to
add electric and magnetic currents, which flow in the same plane, in such a way that the
resulting total field is zero.

4.1.4 Soft and hard boundary conditions

Soft and hard boundary conditions are commonly used to separate two different polarization
cases in edge diffraction theory. The terminology itself comes from acoustics (see e.g., [3]),
where the acoustic pressure p is zero at the soft surface, i.e.,

p = 0 .

Furthermore, the derivative of p normal to a hard surface is zero, i.e.,

∂p

∂n
= 0 .

The latter condition states that the acoustic pressure has a maximum or minimum at the hard
surface. The nomenclature comes from the fact that one feels respectively soft or hard when
touching these acoustic materials. Both cause total reflection of an acoustic wave.

The soft and hard boundary conditions appear also in electromagnetics. To illustrate this, we
study a two-dimensional (2D) PEC structure oriented along the z-axis, and we illuminate it by
a plane wave incident normal to the structure (see Fig. 4.3). If the plane wave is polarized in
z-direction, i.e., the TMz (transverse magnetic to z) or H-plane case, the boundary condition
in (4.14) gives

Ez = 0 (4.18)

at the surface of the PEC, which is a soft boundary condition. Consider also a plane wave
that is polarized with the H-field in z-direction, i.e., the TEz (transverse electric to z) or
E-plane case. Then, it is possible to show that n̂×E = 0 corresponds to

∂En
∂n

= 0 ; En = n̂ ·E =
√
E2
x + E2

y (4.19)

at the surface of the PEC (see Fig. 4.3), where En is the component of the E-field which is
normal to the surface of the PEC, and ∂En/∂n means the derivative of En normal to the
surface. This is a hard boundary condition. Thus, the boundary conditions of the PEC

cylinder are soft for the TMz case and hard for the TEz case. These two boundary conditions
appear also approximately in respectively the H- and E-planes of metallic antenna structures
with two planes of symmetry.

The soft boundary condition is readily understood to stop the wave propagation along the
surface as it makes the power density vector (E × H∗)/2 zero at and along the surface,
whereas the hard boundary condition enhances wave propagation along the surface. Both
these characteristics are clearly observed in the contour plots of the fields around thin metal
cylinders with circular and rhombic cross section in Fig. 4.3. When the cylinder is removed
there would only be a plane wave, i.e., a homogenous level of 0 dB. Therefore, the ripples
on the contour plots are due to the scattered field from the cylinder. The shadow behind
the cylinder is much smaller for the TEz than for the TMz case. Also, for the rhombic
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Figure 4.3: Contour plots of total E-field in the cross section around a PEC cylinder when there is
an incident plane wave from the left. The two left-most graphs show a cylinder with circular cross
section for TMz (H-plane) and TEz (E-plane) cases. The two right-most graphs show the same for a
cylinder with rhombic cross section. The soft boundary condition appears for TMz polarization, and
the hard boundary condition for TEz polarization. Both cylinders have a width of half wavelength
in y-direction. For larger widths there gradually becomes a shadow also for the TEz case.

cylinder the shadow is seen to vanish for the hard TEz case. This will happen for all narrow
cross-sections.

There exist ways to create polarization independent soft surfaces for electromagnetic waves,
e.g., by providing a metal conductor with corrugations. This can be used to make the bound-
ary conditions equal in the E- and H-planes of antennas with two planes of symmetry, and,
in particular of rotationally symmetric BOR1 antennas. Corrugated circular horn antennas
are considered in Chapter 7 of this book. The polarization-independent hard surfaces can
be realized by dielectric-filled corrugations, or by metal strips on a dielectric coating. This
will reduce the shadow of cylinders with oblong cross sections for any polarization of a wave
with known angle of arrival [4].

Once more it must be emphasized that the standard boundary conditions9 must always
be used in all accurate field analyses. In contrast, the soft and hard boundary conditions
in (4.18) - (4.19) are most convenient for interpreting field behavior. Such interpretations are
in particular important during the initial design of antennas and during problem solving. The
boundary conditions in (4.18) - (4.19) are only ideally equivalent to the standard boundary
conditions for some special cases, such as for 2D problems. The terms soft and hard boundary
conditions are commonly used in diffraction theory [5] where there exists different soft and
hard diffraction coefficients for the two cases. The terms can also be used to define artificial
soft and hard surfaces which have soft and hard boundary conditions for any polarization [6].
The soft surface can be realized by corrugations10.

The small scattering from a wire for the TE case is used in wire grids to create polarization
dependent reflectors. If thin z-directed wires are located close together without touching each
other, they will reflect the TMz polarization, and the TEz polarization will be transmitted
with very low transmission loss.

4.1.5 Auxiliary vector potentials

It is common to introduce a magnetic vector potential A and an electric vector potential F

in order to facilitate the solution of Maxwell’s equation for sources located in homogeneous

9 Standard boundary conditions can be found in Section 4.1.2 on page 125.
10 See Section 8.5 on page 277.



4.1. MAXWELL’S EQUATIONS 130

space, see e.g., [1]. Neither A nor F have physical interpretations, and they cannot be
measured. What makes them attractive is that they are solutions to the inhomogenous
Helmholz equations:

∇2A(r) + k2A(r) = −µJ(r′) , (4.20)

∇2F(r) + k2F(r) = −εM(r′) . (4.21)

When J(r′) and M(r′) are surface current distributions, the solutions to these two equations
in homogeneous space are

A(r) = µ
x

Ac

J(r′)Ψ(|r− r′|)dS′ , (4.22)

F(r) = ε
x

Am

M(r′)Ψ(|r− r′|)dS′ , (4.23)

where the scalar Green’s function in these equations is

Ψ(R) =
1

4πR
e−jkR ; R = |r− r′| (4.24)

where k is the wavenumber. The integrals are taken over the surfaces Ae, containing the
source currents J(r′), and Am containing M(r′). The E- and H-fields resulting from A and F
can be derived from Maxwell’s equations and known vector operations. They are given by

E(r) = −jωA(r)− j 1

ωµε
∇(∇ ·A(r))− 1

ε
∇× F(r) , (4.25)

H(r) = −jωF(r)− j 1

ωµε
∇(∇ · F(r)) +

1

µ
∇×A(r) . (4.26)

When |r− r′| is large, i.e., in the far-field region, we have

E(r) = −jω[A(r)− (A(r) · r̂)r̂] + jωηr̂× F(r) , (4.27)

H(r) = −jω[F(r)− (F(r) · r̂)r̂]− j ω
η

r̂×A(r) . (4.28)

It is very common to use the vector potentials A and F and (4.25) - (4.28) in antenna analyses.
The first two of these equations are very laborious to use as they contain several differential
operations. The far-field versions are easier to use. The first version also contains the
inconvenient parameters ω, µ and ε as separate constants. If Eq. (4.22) - (4.24) are inserted
for A and F in (4.27) and (4.28), the ω, µ and ε can be removed from the equations and
replaced by more practical parameters such as the wavenumber k and the wave impedance
η. This removal of ω, µ and ε can be done by using the following simplification relations

k = ω
√
µε , η =

√
µ

ε
, ωµ = kη , ωε = k/η . (4.29)

The most complicated second term in (4.25) can also be expressed in terms of a scalar electric
potential φ, which is defined by11

φe(r) =
1

ε

x

Ac

qe(r
′)Ψ(|r− r′|)dS′ ;

qe(r
′) = − 1

jω
∇ · J(r′) ,

(4.30)

11 See e.g., [7, Sec. 4-1].
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where qe is the electric charge density12. Then, (4.25) becomes

E(r) = −jωA−∇φe(r)− 1

ε
∇× F(r) . (4.31)

Correspondingly, we can define magnetic charge by

qm(r′) = − 1

jω
∇ ·M(r′)

and (4.26) becomes

E(r) = −jωF(r)−∇φm(r) +
1

η
∇×A(r) , (4.32)

φm(r) =
1

η

x

Am

qm(r′)Ψ(|r− r′|)dS′ . (4.33)

In this book we will choose a more convenient way to calculate the E-and H-fields resulting
from known electric and magnetic currents. Through these currents, the E- and H-fields can
be obtained directly by integration both in the near and far-field regions. No differentiation
is needed. These relations are most commonly known as vector dyadic Green’s functions and
will be given in their vector integral forms in the next section.

The vector potential formulations have their advantages when dealing with reactive near-
fields, such as when computing radiation reactances and susceptances. They are also con-
venient when deriving integral equations needed for calculating the current distributions
accurately by numerical methods. We will not derive such integral equations in this book.
However, we will in Section 4.7.1 introduce a numerical algorithm based on (4.32), which we
later use for impedance calculations.

4.2 Vector integral forms of the E- and H-fields

The advantage of using the auxiliary vector potentials A and F is that they have a scalar
Green’s function. However, as described at the end of the previous section, the equations
by which the E- and H-fields can be calculated from A and F are complicated and not
convenient. The expressions to follow do not suffer from these disadvantages. They are
derived in Appendix A by performing the differential operations in (4.25) - (4.26) on the
scalar Green’s function instead of on A and F, and by exchanging the order of integration
and differentiation.

We choose in the next subsection to express the vector integral forms for the E- and H-fields
in terms of the wavenumber k and the wave impedance η, and not making use of ω, µ and ε.
The wavenumber is convenient in equations, whereas its numerical value makes little sense.
We instead use the wavelength λ = 2π/k when presenting practical numerical values. The
wavelength and the wavenumber depend on the medium which in this book mainly is free
space, for which the wavelength λ becomes

λ =
c

f
, i.e., λ[mm] = 300/f [GHz] ,

12 See the continuity equation in (4.5).
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where c = 1/
√
µ0ε0 = 2.99790× 108 m/s ≈ 300 mm/ns is the phase velocity in free space and f

is the frequency at which the calculations are done. This frequency is related to the angular
frequency ω by f = ω/2π. The wave impedance in free space is η =

√
µ0/ε0 = 377 Ω.

4.2.1 General expressions

Let us consider a field problem with known electric and magnetic surface current distributions
located at the surface S′ described by the primed position vector r′, and everywhere else there
is free space. Further, we introduce an observation point r and

R = r− r′ , R = |r− r′| , R̂ = R/R . (4.34)

Then, from Appendix A, we see that the E- and H-fields in the observation point can be
calculated in this way

E(r) = E
J
(r) + E

M
(r) , (4.35)

H(r) = H
J
(r) + H

M
(r) , (4.36)

where E
J

= Ck
x

S′

[ηJC
N1
− (ηJ · R̂)R̂C

N2
]
1

R
e−jkRdS′ , (4.37)

H
J

= −1

η
Ck

x

S′

(ηJ× R̂)CN
1

R
e−jkRdS′ , (4.38)

E
M

= Ck
x

S′

(M× R̂)CN
1

R
e−jkRdS′ , (4.39)

H
M

=
1

η
Ck

x

S′

[MC
N1
− (M · R̂)R̂C

N2
]
1

R
e−jkRdS′ , (4.40)

with Ck = −jk/(4π) and, (4.41)

C
N

= 1 +
1

jkR
, C

N1
= 1 +

1

jkR
− 1

(kR)2
, C

N2
= 1 +

3

jkR
− 3

(kR)2
. (4.42)

In this book Ck is referred to as the incremental source constant , and CN , CN1
and CN2

as
near-field functions, see also (4.43) below. For simplicity we have suppressed the arguments
of the different quantities in (4.37)-(4.42)13. The expression

e−jkR/R

is the same scalar Green’s function (except for a constant) that is used in the expressions
for the vector potentials A and F. Here, it appears as part of the vector dyadic Green’s
functions which are used to calculate H from J, E from J, H from M, and E from M in free
space. In this book we have not written out these Green’s functions explicitly, as this is not
necessary, but instead we work with the complete vector integrals in the forms given above.
Again, note that the above equations are derived from the original Maxwell’s equations for
sources in free space without making any approximations.

13 We have written HM instead of HM (r), J instead of J(r′), R instead of R(r, r′), CN instead of CN (r, r′)
and so on.
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The above functions CN , CN1
and CN2

are conveniently referred to as near-field functions,
because

C
N
≈ 1 , C

N1
≈ 1 and C

N2
≈ 1 , when kR� 1 . (4.43)

This condition appears already when R� 1/k = λ/2π, so unless the observation point is very
close to or at the current sources we may always use CN = CN1

= CN2
= 1. Under these

approximations the integrands representing the Green’s functions have no radial components
in either E- or H-fields. Actually, E and H from incremental current sources are orthogonal
both to each other and to R when the approximation in (4.43) is valid.

4.2.2 Radiating far-field expressions

In the far-field we can use the Fraunhofer approximation which was introduced and discussed
in Section 2.3.4, i.e.,

R̂ = r̂ and R = |r− r′| = |r| = r (4.44)

in amplitude expressions, and

kR = k|r− r′| = k(r − (r′ · r̂)) (4.45)

in phase expressions. These approximations can be understood by studying Fig. 2.8. In order
to see under which conditions they are valid, we will derive the latter. This is most easily
done by splitting r′ in terms of its r̂, θ̂ and ϕ̂ components and expanding R in a power series
valid for small r′, as follows (see Appendix B):

r′ = (r′ · r̂)r̂ + (r′ · θ̂)θ̂ + (r′ · ϕ̂)ϕ̂ ,

R2 = |r− r′|2 = (r − (r′ · r̂))2 + (r′ · θ̂)2 + (r′ · ϕ̂)2

= r2 − 2(r′ · r̂) + (r′)2 ,

R = r

√
1− 2

r
(r′ · r̂) +

(
r′

r

)2

≈ r
(

1− 1

r
(r′ · r̂) +

1

2

(
r′

r

)2

− 1

8

(
2

r
(r′ · r̂)

)2
)
.

We see that the Fraunhofer approximation gives a phase error

∆φ = kR− k(r − (r′ · r̂)) ≈ k

2r
(r′)2 . (4.46)

Thus, it is valid with a maximum phase error ∆φ < π/8 when

r >
4k

π
(r′max)2 = 8(r′max)2/λ = 2D2/λ , (4.47)

where r′max is the maximum length of r′ and D = 2r′max is the diameter of the smallest sphere
which encloses the antenna. Eq. (4.47) defines the far-field region as already discussed in
Section 2.3.1.
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The Fraunhofer approximation gives the following E-field:

E(r) =
1

r
e−jkr{G

J
(r̂) + G

M
(r̂)} (4.48)

with G
J
(r̂) = I

J
− (I

J
· r̂)r̂ , (4.49)

G
M

(r̂) = I
M
× r̂ . (4.50)

The above IJ and IM are the electric and magnetic radiation integrals

I
J

= Ck
x

S′

ηJ(r′)ejk(r′·r̂)dS′ , (4.51)

I
M

= Ck
x

S′

M(r′)ejk(r′·r̂)dS′ , (4.52)

where Ck = −jk/(4π) is the convenient incremental source constant introduced in (4.41). The
H-field becomes

H(r) =
1

η
r̂×E =

1

ηr
e−jkr{r̂× I

J
+ [I

M
− (I

M
· r̂)r̂]} . (4.53)

The radiation integrals IJ and IM are taken over the distribution of electric J and magnetic
M surface currents. For line currents Jl and Ml along a curve L, the integrals in (4.51)
- (4.52) reduce to the line integrals

I
J

= Ck

∫
L

ηJl(r
′)ejk(r′·r̂)dl , (4.54)

I
M

= Ck

∫
L

Ml(r
′)ejk(r′·r̂)dl . (4.55)

If Jl is distributed along a straight line, IJ becomes Ck multiplied with the Fourier transform
J̃l of Jl and correspondingly for Ml and IM . This will be used in Chapter 5 when analyzing
wire and slot antennas. Similarly, if Jl is distributed over a plane surface, IJ becomes Ck mul-
tiplied with the two-dimensional Fourier transform J̃l of Jl, and correspondingly for Ml and
IM . This property will be used in Chapter 7 when analyzing radiation from apertures.

4.2.3 Duality

The expressions for the field solutions EM and HM resulting from magnetic current sources
have similarities with the expressions for the fields EJ and HJ from electric current sources.
This is due to the symmetry of Maxwell’s equations. This symmetry can be formulated in
a general duality theorem which allows us to find the fields resulting from magnetic currents
by using the solution for the fields resulting from corresponding electric currents, and vice
versa, using the replacements in Table 4.1. A consequence of duality is that the impedance
Ze at the port of an electric current distribution becomes equal to η2 times the admittance
Ym at the port of the dual magnetic current distribution of the dual problem14. Thus,

Ze = η2Ym . (4.56)

14 For more information see Section 4.5.4 and Section 5.4.2.
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Table 4.1: Duality replacements

Original problem 1 ηJ EJ ηHJ k Dual of problem 2

Dual problem 1 M ηHM −EM k Original of problem 2

4.2.4 Superposition

The integral form of Maxwell’s equations is a result of their linearity. The integral vector
form also clearly shows that superposition applies. We can find the total E- and H-fields of
several sources by a complex vectorial addition of the E- and H-fields originating from each
of them.

4.2.5 Replacement between electric and magnetic currents

An electric field problem can either have electric or magnetic current sources, or both. In
addition, any known electric current distribution can be replaced by an equivalent magnetic
current distribution which provides exactly the same E- and H-fields everywhere, and vice
versa. The magnetic replacement current distribution MJ which gives exactly the same field
as a known electric current distribution J is type15

M
J

= − 1

jωε
∇t × J = j

η

k
∇t × J (4.57)

where ∇t is the curl operator applied only to the coordinates in a plane orthogonal to J.
Correspondingly, the electric replacement current distribution JM , which gives exactly the
same field as a known magnetic current distribution M, is

J
M

=
1

jωµ
∇t ×M = −j 1

kη
∇t ×M . (4.58)

These replacement relations between electric and magnetic currents can be derived from the
differential form of Maxwell’s equations. If we take the curl on both sides of (4.1) and
use (4.7) and (4.2), we see that a source jωµJ plays the same role in the equations as ∇t×M.
Furthermore, if we take the curl on both sides of (4.2) and use (4.6) and (4.1), we see that
−jωεM plays the same role as ∇t × J.

This equivalence between J and M has no relation to duality and must not be confused
with the equivalent sources in Section 4.3 which are used to replace fields over surfaces in
space.

4.2.6 Frequency scaling

The principle of frequency scaling is an important consequence of Maxwell’s equations. This
is expressed in the best way by defining a scale model of a known antenna, as an antenna in
which the dimensions are a factor S larger than (or smaller than if S < 1) the dimensions of

15 The term replacement currents are specific for this book, but the concept is known and the equations
given as (5a) and (5b) in [28]
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the known antenna. Then, the radiation characteristics (i.e., the radiation pattern, directive
gain, radiation impedance and input reflection coefficient) of the scale model at the frequency
fscl = f/S is exactly the same as the characteristics of the known antenna at the frequency
f , provided all materials are the same with exactly the same material parameters εr and µr.
In practice, εr and µr of a given material may vary slightly with frequency, but unless the
scaling factor is too large the changes are normally negligible. If only the imaginary parts of
εr and µr are different, this will effect the antenna noise temperature and ohmic losses, but
normally not the radiation pattern and the return loss at the input port.

4.3 Construction of solutions: uniqueness and equiva-
lence

It is possible to show that Maxwell’s time-harmonic equations have a unique solution in
lossy materials within a finite region. The requirements for this are that all the sources in
the region are known in addition to one of the following sets of field components on the
boundary of the region:

a) the tangential E-field on the whole boundary,
b) the tangential H-field on the whole boundary, or
c) the tangential E-field on part of the boundary and the tangential H-field on the rest of it.

This fact is referred to as the uniqueness theorem, and it is also valid for infinite regions by
imposing the so-called radiation condition, which states that the fields at infinity are radiation
fields decaying as 1/R. In ideally loss-free finite regions the uniqueness theorem may not be
necessarily valid, as internal resonances may be present at certain frequencies. Such internal
resonances represent a big problem in numerical field solutions of integral equations by using,
e.g., the Method of Moments. However, ideally loss-free problems are never present in the
real world, so in practice field solutions are always unique.

The uniqueness theorem can be used to construct a field solution within a certain region
from the tangential field components at the boundary of the region. This may be used with
advantage in order to separate a complicated field problem into subproblems, where each
subproblem is associated with a certain field region. We can do this by assuming known
tangential field components between the regions. In order to facilitate this approach, the
tangential fields at the boundaries between the regions are interpreted as equivalent sources.
In the next subsection we will describe the three equivalents that are most commonly used
in antenna analysis. We will treat the first two in more detail in Chapter 5 when treating
radiation from apertures.

4.3.1 PEC equivalent and magnetic currents

Let us consider a conducting PEC surface which divides space in an outer and an inner field
region, and an aperture at the location A in this otherwise closed surface (Fig. 4.4). We
assume that there are sources in the inner region that produce fields Ea and Ha over the
aperture. These aperture fields will in turn create fields E0 and H0 in the outer region. It
is evident that Ea and Ha can be considered as sources for the fields E0 and H0 outside the
conductor. Let us now construct an equivalent which makes use of this.
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Figure 4.4: The PEC equivalent for a radiating aperture A in a conducting surface.

We fill the whole inner region with a PEC material and locate equivalent magnetic source
currents

Ma = Ea × n̂ (4.59)

over the surface of the PEC at the location A where the aperture was. n̂ is the normal to
the surface A pointing outwards. In this new field problem, the E-field tangential to the
surface of the PEC is zero resulting from the boundary condition in (4.14). However, at the
part A of the surface there are impressed magnetic currents Ma. Therefore, we must use the
more general boundary condition (4.12), from which we see that E2 × n̂ = Ma when E1 = 0.
Consequently, the tangential E-field E2 × n̂ outside Ma is equal to Ea × n̂ in (4.59) which is
the original tangential E-field in the aperture A before it is closed. Now, it is clear that the
new outer field problem with the inner region filled with PEC has the same tangential E-fields
at its boundary as the original field problem. Therefore it is equivalent to the original field
problem for the outer region according to item (a) of the uniqueness theorem.

This equivalent is referred to as the PEC equivalent . It will give the correct field solution
in the outer region if Eat = (Ea)tan is exactly known. In practice, we may approximate Eat,
where we find an approximate solution in the outer region. This approximate solution is
desirable if the approximate solution to Eat is acceptable. It is easy to find an approximate
solution for Eat if the aperture is small in terms of wavelengths.

4.3.2 Free space and Huygens equivalents

Let us now consider a field problem with some known sources and scattering objects inside a
region in space. We define the boundary Si of this region in a way that it encloses all sources
and scatterers, but does not coincide with any of them (see Fig. 4.5). We denote the fields
inside Si by Ei and Hi, and outside of it by E0 and H

0
. We further assume that we know the

tangential components Eit = E0t and Hit = H0t of both the E- and H-fields at the boundary
Si and want to use them to construct an equivalent problem as follows.

We replace Eit and Hit by

J
S

= n̂×Hit and M
S

= Eit × n̂ , (4.60)

where n̂ is the outgoing normal to Si, and we remove all sources and scatterers in the inner
region. By applying the general boundary condition in (4.12) to Si, we see that if Ei = Hi = 0
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Figure 4.5: The free space equivalent of a field problem.

we get n̂ ×H0t = JS and E0t × n̂ = MS . Therefore, the tangential field components at Si of
this new problem are the same as those at Si of the original problem. Thus, the new problem
is equivalent to the original one in the outer region according to all items of the uniqueness
theorem.

This equivalent is referred to as the free space equivalent , since the equivalent sources radiate
in free space. If we choose the surface Si to coincide with the wavefronts of the waves leaving
the inner region, it corresponds to the case that Huygens used to illustrate his principle of
reconstructing new wavefronts from previous wavefronts. Therefore, we will refer to this
special form of the free space equivalent as the Huygens equivalent .

The free space and Huygens equivalents require knowledge of both the tangential E- and
H-fields at the boundary. Therefore, they represent over-determined field problems in which
we know more than we need in order to get a unique solution. This means that if we use it
to find approximate field solutions by estimating Et and Ht on Si, we may get approximate
field solutions that do not give Ei = Hi = 0 inside Si. It is important to be aware of this fact.
Still, the Huygens equivalent is very convenient to use for creating field solutions, because the
sources radiate in free space so that free space Green’s functions can be used. In addition,
the results are often reasonably accurate over a large region of space. It is commonly used
in the analysis of horn and reflector antennas.

4.3.3 Physical equivalent

The third equivalent is commonly used for analysis of antenna problems involving sources and
metal scatterers (Fig. 4.6). This equivalent is valid in the region exterior to a PEC scatterer
with a boundary defined by its surface with normal n̂, but it also gives correct results of
the fields inside the PEC. The equivalent problem consists of the original sources plus some
induced surface currents, both radiating in free space with the PEC removed. The induced
currents are

J
S

= n̂×H0t (4.61)

located where the surface of the PEC was before its removal. Thus, the PEC has been
replaced by the surface current distribution JS located in free space. The physical equivalent
is a special kind of free space equivalent.
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Figure 4.6: The physical equivalent.

The advantage of the physical equivalent is that the PEC is removed, so that we can use free
space formulas for the radiation field. The problem is to find the tangential component of
HS at the surface, so that JS can be assumed known. A plausible approximation for large
scatterers is the Physical Optics (PO) approximation which states that JS = 2n̂×Hi where
Hi is the incident field on the PEC only due to the original sources. The PO approximation
will be treated in more details in Chapter 7. If we want a more precise solution for JS , we
can use the PEC equivalent to formulate an integral equation with JS as unknown, and then
solve this integral equation by using, e.g., the Method of Moments.

4.4 Incremental current sources

In this section we will describe the fields of incremental current sources. Such sources play
an important role in antenna analysis because more complicated sources can be built up as
a superposition of incremental sources. The reason is that Maxwell’s equations are linear
so that the superposition principle applies. The vector fields from the incremental sources
represent an evaluation of the vector dyadic Green’s functions in free space. We will study
both electric and magnetic sources. In addition, we introduce a combination of these sources
which gives a rotationally symmetric radiation field of the BOR1 type16. This hybrid source
is commonly referred to as a Huygens source.

4.4.1 Incremental electric current (or Hertz dipole)

Let us introduce an incremental electric surface current distribution in the xy-plane of the
form

J
S
(r′) = J

0
dS′δ(x′, y′)ŷ , (4.62)

where dS′ = dx′dy′ is an incremental surface area and δ(x, y) is the two-dimensional delta
function. JS (r′) is equivalent to an incremental electric line current of the form

J(y′) = I
0
dy′δ(y′)ŷ , (4.63)

16 For more information about BOR1 antennas, see Section 2.4.2.
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Figure 4.7: Geometry of vertical (left) and horizontal (right) incremental electric currents.

where δ(y′) is the one-dimensional delta function and I0 = J0dx
′. Let us further change the

orientation of the incremental source in a way that it points in an arbitrary direction l̂, and
assume that the incremental length is finite and given by l. Then,

J(l′) = I0 l̂ , for − l

2
< l′ <

l

2
. (4.64)

For historical reasons, such rectangular line current distributions are often referred to as
Hertz dipoles. The name refers back to Heinrich Hertz and the spark gap dipoles he used
in his experimental discovery of electromagnetic waves in 1888. When l � λ and kr � 1, we
get [from Eq. (4.34) - (4.43)] the following radiation fields of this incremental electric current

Eid(r) = CkηI0
l[̂l− (̂l · r̂)r̂]

1

r
e−jkr , (4.65)

ηHid(r) = CkηI0
l(r̂× l̂)

1

r
e−jkr = r̂×Eid(r) , (4.66)

where Ck = −jk/4π as in (4.41).We can also introduce a far-field function Gid(r) by

Eid(r) =
1

r
e−jkrGid(r̂) ; Gid(r̂) = CkηI0 l[̂l− (̂l · r̂)r̂] . (4.67)

Now we can use (4.65), (4.66) or (4.67) directly with r̂ = sin θ(cosϕx̂+ sinϕŷ) + cos θẑ in order
to find the far-fields of arbitrary oriented electric currents. The vector operations can easily
be understood and evaluated from the explanations to equations (1.7) to (1.9). Yet, here we
still study two specific electric current orientations analytically.

When the electric current is oriented vertically along the z-axis, we have l̂ = ẑ, which can be
found from a simple drawing (Fig. 4.7) that ẑ−(ẑ·r̂)r̂ = − sin θθ̂. We can also use the equations
in Appendix C to obtain the same. Therefore, the far-field function becomes

Gid = −CkηI0
l sin θθ̂ . (4.68)

Thus, the vertical incremental electric current radiates as a BOR0 antenna with a rotationally
symmetric radiation pattern17.

17 BOR0 antennas can be found in Section 2.4.1 on page 48.
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When the electric current is located in the center of the coordinate system and oriented along
the y-axis so that l̂ = ŷ, we get the far-field function

Gid(r̂) = CkηI0 l(ŷ− (ŷ · r̂)r̂) . (4.69)

We can now use ŷ = sin θ sinϕr̂+cos θ sinϕθ̂+cosϕϕ̂ from Appendix C to obtain the following
dependency on θ and ϕ

Gid(θ, ϕ) = CkηI0
l(cos θ sinϕθ̂ + cosϕϕ̂) . (4.70)

We see that the horizontal electric current radiates as a BOR1 antenna with respect to the
z-axis18. The H-plane pattern is omnidirectional, whereas the E-plane pattern is given by
| cos θ| which has maxima in the ±z-directions and zeros along the positive and negative
y-axes, corresponding to θ = 90◦ and ϕ = ±90◦ (see Fig. 4.8 and Fig. 4.9). An x-directed
electric current gives the corresponding field patterns in its E- and H-planes19.

From the above, we see that the direction of the E-field at any point can be found by taking
the direction l̂ of the electric current and removing its r̂ component in a way that the field
becomes normal to r̂. The radiation field is always zero in the directions r̂ = ±l̂.

4.4.2 Incremental magnetic current

Magnetic current sources are important as they can be used as equivalent sources when
analyzing radiation from aperture antennas (see Chapter 7). The radiation field of the
incremental magnetic current is readily found in the same way as for the incremental electric
current, or it can be constructed from the electric current solutions by using duality. Consider
an incremental magnetic current oriented along l̂m, i.e.,

M(l′) = M
0
l̂m , for − l

2
< l′ <

l

2
. (4.71)

Then, the duality relation20 states that the E- and H-fields Eim(r) and Him(r) caused by M

are found from Eid(r) and Hid(r) of the incremental electric currents through

Eim(r) = CkM0
l(̂lm × r̂)

1

r
e−jkr , (4.72)

Him(r) =
1

η
CkM0

l[̂lm − (̂lm · r̂)r̂]
1

r
e−jkr , (4.73)

where ηI0 l for the electric current case has been replaced by M0 l, and Ck = −jk/4π. The
fields of both x- and y-directed magnetic currents are written in spherical coordinates later on
page 144. It is clear from the discussion of the short electric current that the short magnetic
current is omnidirectional in E-plane and has a cos θ-pattern in H-plane (see Fig. 4.8). The
radiation field is zero in the directions r̂ = ±l̂m. The direction of the E-field is orthogonal to
both l̂m and r̂.

18 BOR1 antennas can be found in Section 2.4.2 on page 49.
19 See Section 4.4.4 on page 144.
20 See Section 4.2.3 on page 134.
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Figure 4.8: Radiation patterns of incremental electric current, magnetic current, and Huygens
source: (a) 3D plots when they are polarized in y-direction on the z-axis. (b) E- and H-plane, and
co- and cross-polar patterns in the 45◦-plane.
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(a) Y-polarized incremental electric current.

(b) Y-polarized incremental magnetic current.

(c) Y-polarized Huygens source.

Figure 4.9: Co-polar and cross-polar radiation patterns for y-polarized (a) incremental electric
current, (b) magnetic current and (c) Huygens source.
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4.4.3 Huygens source

There exists an incremental source which has equal and uni-directional E- and H-plane pat-
terns. This source plays an important role in the analysis of aperture antennas. We refer to
it as the Huygens source [8, pp. 44], and describe it as two orthogonal incremental currents,
one electric I0 and one magnetic M0 = ηI0 . The Huygens source is always present as an incre-
mental area source. Let us assume that it is located in the xy-plane. Then, the y-polarized
Huygens source radiating in z-direction is given by the sum of the two sources

J
H

= J0dS
′δ(x′, y′)ŷ , (4.74)

M
H

= ηJ
0
dS′δ(x′, y′)(−x̂) , (4.75)

where dS′ is the incremental surface area.The resultant far-field function becomes

G
H

(r̂) = GidH (r̂) + GimH
(r̂)

= CkηJ0
dS′[ŷ− (ŷ · r̂)r̂− x̂× r̂] ,

(4.76)

with Ck = −jk/4π the same as before. By using the results of the previous two subsections
and x̂ = sin θ cosϕr̂ + cos θ cosϕθ̂ − sinϕϕ̂ from Appendix C, we get

G
H

(θ, ϕ) = CkηJ0dS
′[(cos θ sinϕθ̂ + cosϕϕ̂) + (sinϕθ̂ + cos θ cosϕϕ̂)]

= CkηJ0
dS′(1 + cos θ)[sinϕθ̂ + cosϕϕ̂]

= 2CkηJ0
dS′ cos2(θ/2)[sinϕθ̂ + cosϕϕ̂] .

(4.77)

We see that the Huygens source radiates as a BOR1 antenna with equal E- and H-plane
patterns. This means that the Huygens source has no cross-polarization according to Ludwig’s
third definition21. We also see that we have a null for θ = 180◦, which is the backward
direction. These two properties make the Huygens source a desirable Green’s function for
many radiation patterns. It actually also appears as a Green’s function in some practical
antennas, such as in large aperture antennas (see Chapter 7).

For an arbitrary polarization l̂ of the incremental Huygens source we get the far-field function
of the following general vector form

G
H

(r̂) = CkηJ0
dS′ [̂l− (̂l · r̂)r̂− (̂l× n̂)× r̂] , (4.78)

where n̂ is the normal to the incremental surface area dS′ in the direction of radiation.

4.4.4 Summary

We will often need to know the far-field functions of the incremental electric and magnetic
current sources as well as the Huygens source in the spherical coordinate system. Therefore,
they are summarized here, for the case when they are lying in the xy-plane in the origin of
the coordinate system. In these equations Ck = −jk/4π as before.

A. Incremental electric current source of unit magnitude ηJ0 l = 1.

y-polarized, l̂ = ŷ: Gid(θ, ϕ) = Ck[ŷ− (ŷ · r̂)r̂] = Ck[cos θ sinϕθ̂ + cosϕϕ̂]

x-polarized, l̂ = x̂: Gid(θ, ϕ) = Ck[x̂− (x̂ · r̂)r̂] = Ck[cos θ cosϕθ̂ − sinϕϕ̂]
(4.79)

21 See Section 2.4.2 on page 49 for more information about BOR1 antennas.
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B. Incremental magnetic current source of unit magnitude M0 l = 1.

y-polarized, l̂m = −x̂: Gim(θ, ϕ) = Ck[−(x̂)× r̂] = Ck[sinϕθ̂ + cos θ cosϕϕ̂]

x-polarized, l̂m = ŷ: Gim(θ, ϕ) = Ck[ŷ× r̂] = Ck[cosϕθ̂ − cos θ sinϕϕ̂]
(4.80)

C. Huygens source of unit magnitude ηI0dS
′ = 1.

y-polarized, l̂ = ŷ: G
H

(θ, ϕ) = 2Ck cos2(θ/2)[sinϕθ̂ + cosϕϕ̂]

x-polarized, l̂ = x̂: G
H

(θ, ϕ) = 2Ck cos2(θ/2)[cosϕθ̂ − sinϕϕ̂]
(4.81)

4.4.5 Example: Directivities of incremental sources

Derive and compare the directivities of the incremental electric current source, the incremen-
tal magnetic current source, and the Huygens source.

SOLUTION:

When the three sources are parallel with the xy-plane, their far-field function has the same
form as that of BOR1 antennas, so we may use the power integral in (2.92). For both the
electric and magnetic current sources, this gives

Pid = π|Ck|2
∫ π

0

(cos2 θ + 1) sin θdθ = π|Ck|2
8

3

as their radiation patterns are equal, but with their E- and H-planes interchanged. The
directivities are then also equal, obtained by using (2.69);

D
0

=
4π|Ck|2
π|Ck|28/3

=
3

2
(i.e., 1.76 dBi) .

The far-field function of the Huygens source is of the form cosn(θ/2) with n = 2 and no cross-
polarization. In Section 2.4.3, we have already evaluated the directivity of the cosn(θ/2)

pattern, and the result is for n = 2

D
0

= n+ 1 = 3 (i.e., 4.77 dBi) .

Thus, the Huygens source is 3 dB more directive than the incremental electric and magnetic
dipoles.

4.5 Reaction, reciprocity and mutual coupling

The equivalent circuit of receiving antennas22 contains an induced current or voltage source.
This is proportional to the amplitude of the incoming plane wave, and thereby also to the
current or voltage at the port of the transmitting antenna. This induced source represents

22 More about this can be found in Section 2.6.1.
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therefore the mutual coupling between the two antennas. In this section, we will show how
to calculate this coupling by using reciprocity and reaction. The principle of reciprocity was
already introduced in Section 2.3.2. Despite that, it will be formulated more completely
in terms of reaction integrals in the present section. The reciprocity theorem is described
mathematically by three different relations valid for different types of sources. These relations
can be derived from Maxwell’s time-harmonic equations by using known vector operations
and by assuming a reciprocal medium, see, e.g., [1, Sec. 3-8]. The three relations will be given
below in (4.86) to (4.88) without derivations, and we will show how to use them to calculate
mutual coupling, mutual impedances and mutual admittances, as well as self-impedances and
self-admittances.

4.5.1 Reaction integrals

The reciprocity relations are formulated most compactly by first introducing the so-called
reaction between the field of a source a and a source b, which has the form of an integral.
The extent of source b is the integration area Ab. The reaction integrals has two forms, one
which is valid for the case when source b is an electric current distribution Jb, and another
when it is a magnetic current distribution Mb. These are

〈Ea,Jb〉 =
x

Ab

Ea · JbdA , (4.82)

〈Ha,Mb〉 = −
x

Ab

Ha ·MbdA . (4.83)

In the first definition Ea is the E-field distribution over Ab due to a source Ja or Ma, calculated
when Jb = 0. In the second definition Ha is the corresponding the H-field distribution over
Ab due to a source Ja or Ma, calculated when Mb = 0. The reaction integrals are shown as
surface integrals, but they become line integrals if the sources Jlb and Mlb are line currents,
i.e.,

〈Ea,Jlb〉 =

∫
Lb

Ea · Jlbdl , (4.84)

〈Ha,Mlb〉 = −
∫
Lb

Ha ·Mlbdl , (4.85)

where Lb defines the extents of the sources.

4.5.2 Three reciprocity relations

We are now ready to present the three different reciprocity relations, with reference to the
drawings in Fig. 4.10:

1. If source a is a known electric surface current Ja distributed over the area Aa, and
source b is a known electric surface current Jb distributed over the area Ab, reciprocity
states that

〈Ea,Jb〉 = 〈Eb,Ja〉 , (4.86)

where Ea is the field distribution over Ab due to Ja, calculated when Jb = 0, and Eb

is the field distribution over Aa due to Jb, calculated when Ja = 0. In other words,
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Figure 4.10: Illustration of reciprocity between two electric current distributions (upper), and
between two magnetic current distributions (lower).

equation (4.86) expresses that the reaction between Ea and Jb is equal to the reaction
between Eb and Ja.

2. For magnetic current sources Ma and Mb over Aa and Ab, respectively, we have corre-
spondingly

〈Ha,Mb〉 = 〈Hb,Ma〉 , (4.87)

where Ha is the H-field distribution over Ab due to Ma, and Hb is the one due to Mb

evaluated over Aa. In other words, equation (4.87) expresses that the reaction between
Ha and Mb is equal to the reaction between Hb and Ma.

3. When source a is an electric current source distributed over Aa, and source b is a
magnetic source Mb distributed over Ab, we have

〈Ha,Mb〉 = 〈Eb,Ja〉 , (4.88)

where Ha is the H-field distribution over Ab due to Ja, and Eb is the field distribution
over Aa due to Mb. In other words, the expression (4.88) expresses that the reaction
between Ha and Mb is equal to the reaction between Eb and Ja.
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4.5.3 Reciprocity between input/output ports of antennas

Let us first use the reciprocity relations to study the coupling between the ports a and b of
two antennas (Fig. 4.11). We consider two short electric line currents defined by

Jla = Ia l̂a , for − 1

2
la < l <

1

2
la , (4.89)

Jlb = Ib l̂b , for − 1

2
la < l <

1

2
la , (4.90)

which are located between the poles of the ports a and b of the two antennas, respectively.
Each port may be the input/output connector of the antenna. Now, reciprocity states that
the following two reactions are equal:∫ la/2

−la/2
(Eb · Jla)dl =

∫ lb/2

−lb/2
(Ea · Jlb)dl . (4.91)

We assume that Ia and Ib are constant over the small lengths la and lb, respectively. In
addition, we presume that la and lb are so small in terms of the wavelength that Eb and Ea,
respectively, can be considered constant over them. This is in particular true between the
two wires of a two-wire transmission line. Then we easily evaluate the two coupling integrals
in (4.91) and get

−VbaIa = −VabIb , (4.92)

where Vba = − 1

Ia
〈Eb,Jla〉 = −

∫ la/2

la/2

(Eb · l̂a)dl ≈ Ebla (4.93)

is the voltage measured at port a due to a source at terminal b, and

Vab = − 1

Ib
〈Ea,Jlb〉 = −

∫ lb/2

−lb/2
(Ea · l̂b)dl ≈ Ealb (4.94)

is the voltage at terminal b due to a source at terminal a. The above two integrals represent
voltages, as the voltage between a point l = lb/2 and another point l = −lb/2 is defined
by

Vb = −
∫ lb/2

−lb/2
E · l̂bdl .

The integrals can be taken along any curve between the points lb/2 and −lb/2, in our case
a straight line. If the two sources are equal, i.e., Ia = Ib = I, the expression (4.92) yields
Vba = Vab. This means that the response is the same either way. And, if we excite the port of
antenna a with a current I, the response at the port of antenna b is a voltage V . If we excite
the port of antenna b with the same current I, the response at the port of antenna a is the
same, i.e., V . This is only correct when the antennas (and their environments) are exactly
the same and have exactly the same locations and orientations, in the two cases.

The ratios Zba = Vba/Ib and Zab = Vab/Ia are the mutual impedances between ports a and b,
and Zba = Zab follows from the reciprocity. According to the above formula for the mutual
impedance written in terms of the reaction integral is according to the above

Zab = − 1

IaIb
〈Eb,Jla〉 = − 1

IaIb
〈Ea,Jlb〉 . (4.95)
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Reciprocity if Vab = Vba when Ia = Ib under else equal conditions
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Figure 4.11: Illustration of reciprocity between point current sources Ia and Ib connected to the
ports of two antennas.

Now let us consider the self-reaction of the E-field due to Jla at port a. The negative of
the self-reaction divided by Ia represents then the induced voltage between the poles of port
a due to the current Ia on the same port. Therefore, we may define the self-impedance of
antenna a as this voltage divided by Ia, i.e.,

Zaa = − 1

IaIa
〈Ea,Jla〉 . (4.96)

The self-impedance of antenna b can be defined correspondingly. The above two formulas
are very general and apply even to the extended current distributions23.

4.5.4 Mutual impedance, mutual admittance and coupling coeffi-
cient

The reaction relations can be used to calculate the mutual coupling between all types of
sources with known forms, e.g., between the basis functions of a series expansion of the
current distribution in a Method of Moments solution. In order to see this and interpret
the reaction relations we may consider two discrete circuit ports a and b (associated with
current distributions Ja and Jb) and the equivalent circuits representing these ports, as follows
(Fig. 4.12). We define the port b of an electric current distribution Jb on Ab by an infinitesimal
gap located somewhere across and normal to the current distribution, and we define the port
current Ib as the total current passing this feed gap, i.e., Ib =

∫
Jb · l̂dt where l̂ is the direction

normal to the gap and t is along the gap. Similarly, we can define a port a with current Ia.
It is clear that Ja and Ea are proportional to Ia, and that Jb and Eb are proportional to Ib.
We normalize the reaction integrals in (4.82) [which have the dimension Volt-Ampere (VA)]

23 It will come more about this in the rest of this section.
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with the product IaIb. Then, the reaction integrals get the dimension ohm (Ω) and represent
the mutual impedance between the two equivalent circuit ports a and b. The formula for the
mutual impedance is the same as between point sources in (4.95) and gets into the equivalent
circuit as shown in Fig. 4.1224.

In the same way we can define the port b of a magnetic current distribution over Ab by two
opposite points along the rim of Mb. Then we define the port voltage as the total voltage
Vb between these two points, i.e., the integrated E-field along a line between the two points.
Thus, Vb =

∫
Mb · l̂dt where l̂ is the direction normal to the line and t is along the line

(Fig. 4.13). Then, the reaction integrals in (4.83) (which have the dimension Volt-Ampere
(VA) as well) get the dimension Siemens (S) and represent a mutual admittance Yab between
the two ports a and b if we normalize them with the product VaVb of the voltages over these
ports, i.e.,

Yab =
1

VaVb
〈Ha,Mb〉 =

1

VaVb
〈Hb,Ma〉 . (4.97)

We can also use the first two reaction integral expressions to calculate the self-reaction, i.e.,
the reaction between source a and the field of source a. If these are normalized by I2

a and
V 2
a , respectively, they represent respectively the self impedance and admittance at the above

defined ports25.

By similar arguments, we can obtain the mutual coupling coefficients between an electric Ja
and a magnetic Mb current distribution as follows, see Fig. 4.14:

Cab = − 1

VbIa
〈Eb,Ja〉 =

1

VbIa
〈Ha,Mb〉 . (4.98)

This coupling coefficient Cab = Cba represents a voltage coupling coefficient in the equivalent
circuit for Ja and a current coupling coefficient in the equivalent circuit for Mb, as shown in
Fig. 2.2126.

4.6 Imaging

Imaging is a technique which we can use to construct field solutions satisfying the boundary
conditions at a specific surface. In practice, we only use imaging in connection with infinite
plane PECs or PMCs. For other geometries the imaging equations become so complicated
that they hardly represent any simplification over a numerical solution. We will here only
show the imaging principle applied to infinite plane PECs and PMCs.

The imaging technique works as follows. The plane PEC or PMC is replaced by an image
plane. The image plane divides space in two regions, the source region and the null-field
region. We construct the field in the source region by locating an image source in the null-
field region, in a way that the original boundary conditions on the image plane are satisfied27.
Then by using the uniqueness theorem, the total field solution of the original problem in the
source region is equal to the sum of the fields due to the impressed source and its image, i.e.,

24 See also Section 2.6.1 on page 2.6.1.
25 For more information see Section 5.1.7 on page 178.
26 More information can be found in Section 2.6.1 on page 65.
27 This means n̂× E = 0 for a PEC and n̂×H = 0 for a PMC where n̂ is the normal to the image plane

pointing into the source region.
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Htot = Hi + Himg, and in the null-field region it is zero by definition. The induced electric
currents on the PEC are given by

J
S

= n̂×Htot = n̂× (Hi + Himg) = 2n̂×Hi , (4.99)

where the latter equality follows from the symmetry of the problem and also from the equa-
tions to follow. Correspondingly, the induced magnetic currents on the PMC are

M
S

= Etot × n̂ = (Ei + Eimg)× n̂ = 2Ei × n̂ . (4.100)

We will now show the expressions for the image sources when the actual sources are located
over a plane PEC and a plane PMC. Consider first an electric current source J located at a
point r′, i.e., J(r′), and a ground plane defined by rp(u, v) when the parameters u and v vary,
having a constant surface normal n̂. Then, the image source is located at

rimg = r′ − 2[(r′ − rp) · n̂]n̂ , (4.101)

where rp is any point on the image plane. If the ground plane is a PEC, the image current
is given by

Jimg = −[J− 2(J · n̂)n̂] . (4.102)

And, if the ground plane is a PMC, the image current is given by

Jimg = J− 2(J · n̂)n̂ . (4.103)

If we instead consider a magnetic current source M located at r′, the image will have the
same location as in the J case, but the image current is

Mimg = M− 2(M · n̂)n̂ (4.104)
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for the PEC case. And for the PMC case, we have

Mimg = −[M− 2(M · n̂)n̂] . (4.105)

If the source is incrementally small the far-field function of it (in free space) becomes by
using (4.49) and (4.51)

G(r̂) = Ckη[J(r′)− (J(r′) · r̂)r̂]ejk(r′·r̂) . (4.106)

From the same two equations the far-field function of the image becomes

Gimg(r̂) = Ckη[Jimg(rimg)− (Jimg(rimg) · r̂)r̂]ejk(rimg·r̂) . (4.107)

Note that we have put no restriction on the location of the center of the coordinate system,
i.e., the phase reference point, in these two equations. The total far-field function is then the
sum of these, as they already have the same phase reference point, i.e.,

Gtot(r̂) = G(r̂) + Gimg(r̂) . (4.108)

We will now show that the boundary conditions actually are satisfied for these cases, by
choosing the electric current above the PEC as an example. If the current element J is
infinitely small, the E-field from it at any point rp on the surface is given by28

Ei = Ck[ηJC
N1
− η(J · R̂)R̂C

N2
]
1

R
ejkR , (4.109)

where we used R = rp−r′. At the same point the E-field of the image source becomes

Eimg = Ck[ηJimgCN1i − (ηJimg · R̂i)R̂iCN2i
]

1

Ri
e−jkRi , (4.110)

where Ri = rp − rimg. By using (4.101) and by studying Fig. 4.15 we get rimg − rp = r′ − rp −
2[(r′ − rp) · n̂]n̂ or

Ri = R− 2(R̂ · n̂)n̂ . (4.111)

This means that R = Ri, and consequently that CN1
= CN1i

, CN2
= CN2i

.

Let us first consider the case where J is parallel with n̂. Then, Jimg = J ∝ n̂. The tangential
components of the total E-field at the surface can be evaluated by taking n̂ × (Ei + Eimg).
This operation involves the following vector operations [when using Ei from (4.109) and Eimg

from (4.110)];

n̂× n̂ = 0 , n̂× (n̂ · R̂)R̂ , n̂× (n̂ · R̂i)R̂i .

We see from (4.111) that n̂ · R̂i = −(n̂ · R̂) and n̂× R̂i = n̂× R̂, so that

n̂× (n̂ · R̂)R̂ = n̂× (n̂ · R̂i)R̂i .

Using these we finally get n̂×(Ei+Eimg) = 0 at the image surface, and the boundary condition
on the PEC is satisfied.

28 Compare this with Eq. (4.37).
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Let us finally consider that J is orthogonal to n̂. Then, Jimg = −J and the vector operations
needed to determine the tangential E-field at the ground plane become

n̂× J =− n̂× Jimg ,

n̂× (J · R̂)R̂ =n̂× (Jimg · R̂i)R̂i .

Using these, we also find that the boundary condition n̂ × (Ei + Eimg) = 0 is satisfied. This
proof could also have been done by visual inspection of the drawings in Fig. 4.15 and using
the symmetry of the problems.

Thus, our imaging solutions satisfy the boundary conditions which means that they are valid
and are unique solutions.

4.7 Integral equations and Method of Moments

We have in Section 4.2 expressed the fields as integrals over electric and magnetic currents
located in free space. Actual field problems will also include a structure. However, even in
the presence of a structure, it is always possible to define equivalent subproblems. These
subproblems consist of equivalent or physical electric and magnetic sources radiating in an
unbounded homogeneous material. Therefore, the field expressions for homogeneous regions
play an important role even in formulating complicated field problems.

When using equivalent sources to formulate field problems we end up with integral equations
which need to be solved in order to determine the equivalent sources. The integral equations
are a result of enforcing the original boundary conditions of the fields at the boundaries, i.e.,
at the locations of the equivalent sources. Such integral equations are conveniently solved
numerically by the Method of Moments [7]-[10]. Recall that this is not a book on numerical
solutions by the Method of Moments. However, using a Method of Moments procedure, some
of the classical integral formulas for antenna impedances and admittances can be derived more
easily and with better physical insight. Therefore, we introduce this method here in order to
use it in the analytic formulations in later sections29.

We consider as an example an integral equation of the form

[Ei(r) + E
S
(r)]tan = 0 for r = r

S
(u, v) , (4.112)

which means that the tangential components of Ei(r) + ES (r) are zero at the surface S

described by rS (u, v). Ei(r) is a known incident field on S, and

E
S
(r) =

x

S′

J(r′) ·G(r, r′)dS′ (4.113)

is the field scattered by the unknown induced current distribution J(r′), with S′ the surface
r′ = rS (u, v), which is the same as the surface S over which the unknown current J(r′) is
distributed, and G(r, r′) is the dyadic Green’s function of the field problem. G(r, r′) may be
the Green’s function in free space (or generally homogeneous space), where we have

J(r′) ·G(r, r′) = Ck[ηJ(r′)C
N1
− (ηJ(r′) · R̂)R̂C

N2
]
1

R
e−jkR , (4.114)
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as given in Section 4.2.1, where R = |r− r′| and R̂ = (r− r′)/|r− r′|.

We want to determine J(r′) by solving the integral equation. The standard way to do this is
to expand J(r′) in M basis functions Bm(r′) according to

J(r′) =

M∑
m=1

ImBm(r′) , (4.115)

where Ims are unknown coefficients. The basis function can be of different types. The most
common ones are entire domain and subsectional basis functions (Fig. 4.16). Each entire
domain basis function covers the whole surface S′, and together they may correspond to, e.g.,
a one or two-dimensional Fourier series expansion of J(r′) over the surface S′. The subsec-
tional basis functions covers different subsections of the source surface S′, and they may or
may not overlap with the neighboring basis functions. All together the subsectional basis
functions cover the complete surface S′ over which the unknown current is distributed. The
subsectional basis functions may, e.g., be non-overlapping rectangular pulse functions located
side by side, corresponding to a staircase approximation of J(r′). They may also be triangular
rooftop functions which correspond to a staircase approximation of J(r′) in one direction and
a piecewise linear approximation in the other. The piecewise linear approximation of J(r′) is
obtained by letting neighboring triangular sections overlap to 50 %. The basis functions must
cover all different components of J(r′). The Method of Moments solution converges more
rapidly if the basis functions are chosen in a way that they represent the major physical
characteristics of the current distribution, such as being zero at the ends of wires etc.

Now we insert the basis function expansion of J(r′) into the integral equation. The result is

[Ei(r)]tan +

M∑
m=1

Im[EBm(r)]tan = 0 on S, (4.116)

with EBm(r) =
x

S′

Bm(r′) ·G(r, r′)dS′ . (4.117)

The above Eq. (4.116) states that the boundary condition must be satisfied continuously
over the surface S. This is of course impossible when the current is approximated by a finite
series. We have to introduce some kind of weighted average of the boundary condition. To
this end, we introduce N weighting functions Wn(rS ) over S30 which are tangential to the
surface. We multiply (4.116) with each of the and integrate over S. The result is

M∑
m=1

ImZmn = Vn for n = 1, N , (4.118)

with Zmn = 〈EBn(r
S
),Wn(r

S
)〉 =

x

S

EBm(r
S
) ·Wn(r

S
)dS , (4.119)

Vn = −〈Ei(rS ),Wn(r
S
)〉 = −

x

S

Ei(rS ) ·Wn(r
S
)dS . (4.120)

The equations in (4.118) form a set of N linear equations to determine the M unknown
expansion coefficients Im. We need N = M weighting functions in order to get a unique

29 See Section 5.1.7, 5.4.2, and 6.2.
30 This is also called test functions.
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Figure 4.17: Illustration of cross section of wire of radius a and the locations of an incremental
current segment, re, and a test segment, rt. The current segment consists of a pulse current filament
of length l, plus two point charges at either end.

solution for all Im. One of the most accurate approaches is to choose the weighting functions
equal to the basis functions, i.e., Wn(rS ) = Bn(rS ), which is referred to as Galerkin’s method .
In this case we recognize Zmn as the reaction between the two current sources Bm(r′) and
Bn(rS ). Zmn gets the dimension ohm (Ω) and represents a mutual impedance if we choose all
Bn(rS ) to have dimension inverse meters (m−1), so that Im gets the dimension Ampere (A).
Zmn and Vn can be evaluated numerically. There are severe difficulties in evaluating Zmn
when Bm(r′) and Wn(rS ) overlap. This is because the Green’s function in (4.116) is singular
when the field point r

S
and the source point r′ coincide. These singularities are referred

to as source point singularities. Zmm represents the self-impedance of each basis function
Bm(rS ).

Method of Moments solutions can be implemented numerically and several computer codes
are available for analysis of, e.g., wire antennas, two-dimensional scatterers and bodies of
revolution, and even three-dimensional scatterers. Infinite multilayer substrates and ground
planes can be included via the Green’s function31. The problem in implementing a Method of
Moments solution is often related to the treatment of the source point singularities. In some
cases it may be also difficult to get uniform convergence of the results when M increases due
to numerical instabilities. In many Method of Moments implementations, there are also prob-
lems with structure resonances which give erroneous results at specific frequencies. However,
in most cases the Method of Moments gives acceptable and accurate results. For this reason,
it is often used as an “ideal” reference for other approximate calculation methods.

In the present book we will only use the Method of Moments with one or two basis functions,
in order to derive analytic integral solutions to the input impedance of a dipole, a slot and a
microstrip patch antenna. It is possible to get accurate results by using only one or two basis
functions if they are chosen correctly. This requires experience and physical insight. For the
three mentioned examples, the current distributions are known to be approximated well by
half-wave sine or cosine functions. We will in the next two subsections present a numerical
algorithm for evaluation of near-field couplings between subsectional basis function for wire
and surface currents, and we will later use these to evaluate self-impedances of dipoles, slots
and patches. Some basic literature about the Method of Moments in electromagnetics is
given in the reference list, see [7]-[10].

31 For more information see Section 6.3 on page 217.
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4.7.1 Simple algorithm for near-field from line current

The vector integral forms of the E- and H-fields given in Section 4.2.1 have strong source
point singularities. This fact makes them not suitable for evaluation of self-impedances and
Method of Moments matrix elements of wire antennas. Therefore, we here present a near-
field formula which is far more convenient for numerical evaluation. We will only show the
formula for the E-field, as this is the only one needed when computing impedances of wire
antennas.

Consider the same line current I0 l̂ of incremental length l� λ, which was introduced in (4.64),
and locate it with its center at the point rl, see Fig. 4.17. Then, we want to evaluate the
field at a location rt + aρ̂, at the surface of the wire, where a is the radius of the wire, rt is
at its center line, and ρ̂ is orthogonal to the direction t̂ of the wire, i.e, ρ̂ ⊥ t̂. We need the t̂
component of the E-field at rt + aρ̂. This becomes, by assuming a thin wire approximation,

E(rt + aρ̂) · t̂t = CkηI0t

{
l̂ · t̂Ψ

J
− 1

k2t
Ψq(t)

}
, (4.121)

where l = l̂l,

Ψ
J

=
1

l

∫ l/2

−l/2

1

R(l′)
e−jkR(l′)dl′ with R(l′) = |(rt + aρ̂)− (rl + l′̂l)| , (4.122)

Ψq(t) =
1

Rpp
e−jkRpp − 1

Rpm
e−jkRpm − 1

Rmp
e−jkRmp +

1

Rmm
e−jkRmm , (4.123)

with 5.1632

Rpp = |(rt + (t/2)t̂ + aρ̂)− (rl + (l/2)̂l)| ,
Rpm = |(rt + (t/2)t̂ + aρ̂)− (rl − (l/2)̂l)| ,
Rmp = |(rt − (t/2)t̂ + aρ̂)− (rl + (l/2)̂l)| ,
Rmm = |(rt − (t/2)t̂ + aρ̂)− (rl − (l/2)̂l)| .

(4.124)

We have, also in (4.121), weighted the field with the length t � λ of a subsectional test
function. The expression for ΨJ can be integrated numerically for all locations of rt since
we have avoided the source point singularity by introducing the wire radius. It can also be
conveniently approximated by

Ψ
J

=
1

r
e−jkr with r =

√
|rt − rl|2 + a2 . (4.125)

The above equations are obtained from [7, Sec. 4-2 and 4-3], except that we have introduced
a simpler approximation of ΨJ . This is valid even for rt = rl provided l � a, which means
that it converges when l decreases for a given wire radius. ΨJ originates from the line current,
the first two terms in (4.123) represent the negative gradient of the potential originating from
the point charge at the end rl+(l/2)̂l of the line current, and the last two terms represent the
negative gradient of the potential originating from the negative charge at its opposite end
rl − (l/2)̂l.

32 We recognize (4.122) as originating from (4.22) and (4.24), and (4.123) as a finite difference approxi-
mation of the gradient of the scalar potential in (4.30) (4.31).
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Figure 4.18: Illustration of surface current segment of width w and length l, and test segment of
width v and length t.

For l ≤ 0.005, the algorithm gives plausible accuracy even for the reactive field components
when computing impedances and admittances. It has been used to produce the results shown
in Fig. 5.9 and Fig. 5.1633.

4.7.2 Simple algorithm for near-field from surface current

Now we will present a similar formula for convenient evaluation of near-fields of surface
current segments. The formula is similar to that presented in [11]. But instead of pulse
basis functions for charges, we have chosen line charge distributions at the edges of the pulse
current basis functions.

Consider an incremental y-directed surface current segment located at r
S

and of width w
and length l in the xy-plane, as shown in Fig. 4.18, i.e.,

J(r
S

+ xx̂ + yŷ) = J
0
ŷ for − w

2
< x <

w

2
, − l

2
< y <

l

2
. (4.126)

We want to evaluate the field at a location rt, which may or may not coincide with r
S
. We

here limit the formula to the y-component of the E-field, and weight this with the area A = tv

of a subsectional test function. When rt and r
S

coincide, we enforce t = l and v = w.

Then, correspondingly to the formula in the previous subsection, we have,

E · ŷtv = CkηJ0
tv
{
lwΨ

J
− w

k2t
Ψq(t)

}
, (4.127)

where

Ψ
J

=
1

lw

∫ l/2

−l/2

∫ w/2

−w/2

1

R(x′, y′)
e−jkR(x′,y′)dx′dy′ , (4.128)

33 There exist Matlab code for all figures of which the caption start with ?.
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with R(x′, y′) = |rt − (r
S

+ x′x + y′y)| (4.129)

and Ψq(t) = Ψwpp −Ψwpm −Ψwmp + Ψwmm , (4.130)

with Ψwpp =
1

w

∫ w/2

−w/2

1

Rpp(x′)
e−jkRpp(x′)dx′ (4.131)

and similarly for Ψwpm, Ψwmp and Ψwpp with

Rpp(x′) = |(rt + (t′/2)t̂)− (r
S

+ (l/2)ŷ + x′x̂)| ,
Rpm(x′) = |(rt + (t′/2)t̂)− (r

S
− (l/2)ŷ + x′x̂)| ,

Rmp(x′) = |(rt − (t′/2)t̂)− (r
S

+ (l/2)ŷ + x′x̂)| ,
Rmm(x′) = |(rt − (t′/2)t̂)− (r

S
− (l/2)ŷ + x′x̂)| .

(4.132)

The above integrals can readily be evaluated numerically, except for the three cases when
rt = rS and rt = rS ± ((l/2) + (t/2))̂l. In the first case, the integrands of ΨJ , Ψwpp and
Ψwmp have singularities. We can avoid the singularity problem in ΨJ by transforming the ΨJ

integral to the polar coordinates, and evaluate it numerically by discretizing φ according to

Ψ
J

=
4

lw

N∑
n=1

∆φ
j

k
[e−jkR(φn) − 1] ; ∆φ =

π

2N
, (4.133)

with

φn =
1

2
∆φ+ ∆φ(n− 1) for n = 1, 2, ..., N (4.134)

R(φn) =

{
w

2 cosφn
for 0 < φn < φ0

l
2 sinφn

for φ0 < φn < π/2
, (4.135)

φ0 = arctan(l/w) .

The singularity problem in Ψwpp and Ψwmm can be avoided by introducing t′ < t, see Fig. 4.18,
for instance t′ = 0.5t, and instead evaluating the field by using

E · ŷtv = CkηJ0
tv
{
lwΨ

J
− w

k2t′
Ψq(t

′)
}
. (4.136)

Note that the first t in the equation, which represent the length of the test function (i.e., the
weight), is kept to its original value, whereas the second and third t are changed to t′. The
first t is used to evaluate the gradient of the potentials from the line charges at the ends of
the surface current element, and this can of course be chosen independently of the length of
the test function.

In the second and third cases, we may correspondingly use (4.136) to avoid the singularities
in Ψwpm or Ψwmp.

For l ≤ 0.0025, N = 1000 and t′ = t/2, the algorithm gives acceptable accuracy even for the
reactive field components when computing impedances and admittances. It has been used
to produce the results in Fig. 5.9 and Fig. 5.24?.
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4.8 Complementary comments by S. Maci

The Equivalence theorem is the modern electromagnetic extension of the classical Huygens
principle of the XVII century. This principle asserts that “each element of wavefront can
be regarded as a center of secondary disturbance which gives rise to spherical wavelets ...
the position of the wavefront at any later time is the envelope of all such wavelets” [12].
Fresnel extended the Huygens theorem in 1870, leading to the formulation of the so-called
Huygens-Fresnel principle, which is the foundation of the theory of diffraction of light. Fres-
nel supplemented Huygens construction with the postulate that the secondary wavelets can
mutually interfere when the wavefront is obstructed by a surface located between the source
and the observer. Kirchhoff gave these ideas a mathematical basis in 1883 [13], by showing
that the Huygens-Fresnel principle may be regarded as an approximate asymptotic form of
a radiation integral that expresses the solution of the homogeneous wave equation. The in-
tegral theorem of Kirchhoff can be regarded as the scalar version of the radiation integral of
the equivalence theorem. The first modern version of this theorem for electromagnetic waves
(Section 4.3.2) was published by A.E.H. Love [14] in 1901 and rigorously proven by McDonald
in 1911 [15]. Another physically appealing proof of this theorem is due to Schelkunoff [16].
As a result of the above, the equivalence theorem is today most often referred as Love’s
equivalent theorem or the Love-Schelkunoff equivalence theorem.

A general treatment of all types of equivalence theorems can be found in [17]. Here, Har-
rington poses the emphasis on the fact that it is somewhat restrictive to impose the null field
inside the equivalence surface S as Love did in his formulation. Any other field would serve
as well, leading to the definition of an infinite set of equivalent currents as far as the external
region is concerned. Any type of internal field can be constructed, provide the equivalent
currents are defined by the jump of the tangential electric and tangential magnetic field at
the surface. As a particular choice, this allows for defining a particular set of electric currents
only (as well as magnetic current only) radiating in free space, which are equivalent for the
external field [18].

Section 4.2.5 presents the expression to replace an electric (magnetic) current distribution
with a magnetic (electric) current distribution that radiates exactly the same field. This
can also be understood as the existence of non-radiating sources, obtained as the sum of
an electric (magnetic) current distribution and its magnetic (electric) replacement current
distribution with the opposite sign. The existence of non-radiating current distributions is
on the other hand embedded in Love’s formulation of the equivalence theorem, which makes
the field radiated by the equivalent currents zero inside the equivalence surface.

Section 4.7 summarizes the Method of Moments (MoM) method based on Electric Field
Integral Equation (EFIE) for antenna problems. It has been mentioned that the major
difficulty in implementing this method is the hyper-singular reaction integral representing
the self-impedance. The hyper-singularity is in the dyadic Green’s function of the electric
field occurring in the kernel. This problem may be overcome by using the Mixed Potential
Integral Equation (MPIE) approach [19], where the electric field at the surface boundary is
represented by vector and scalar potentials. In this way, the MoM impedances are reduced to
the summation of two contributions. The first contribution is the reactions between weight-
function currents and vector potentials produced by basis-currents; the second contribution
is the reaction integral between weight-function charges and scalar potentials produced by
basis-function charges. Both the resulting integrals of the MPIE self-impedances contain
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singularity of order one, easy to be calculated. MPIE formulation for multilayer Green’s
functions, useful for patch antenna problems, is presented in [20]. The MPIE decomposition
requires that the vector basis/weight functions are div-conforming, namely their divergence
possess a zero at the line-boundary of the subdomain. This property should be satisfied by
any MoM Galerkin basis. In particular, the most used div-conforming basis-functions in MoM

codes, are the so called Rao-Wilton-Glisson (RWG) basis functions [21], which, thanks to their
triangular domain, are adaptable to any type for curved surfaces. Another impairment of
MoM is its breakdown for low frequencies. This can be overcome by decomposing the surface
currents in a solenoidal and a non-solenoidal remainder [21]-[22].

The direct inversion of a MoM matrix of dimension N requires N3 numerical operations. Since
the density of the sub-domain basis functions should be of the order of ten in a wavelength, the
direct inversion becomes rapidly not affordable when increasing the dimension of the antenna
in terms of wavelengths. Iterative solutions should be invoked for a more efficient inversion
of the problem. This inversion is greatly alleviated if one finds a good pre-conditioner for the
specific problem [22]-[23]. For very large antenna problems, MoM can be formulated by the
Fast Multiple Method (FMM) [24] or by its multilevel version (MLFMM) [25]. This produces
a drastic sparsification of the MoM matrix, which reduces the asymptotic complexity of the
problem to N logN operations where N is the dimension of the MoM matrix. Alternatively,
one can reduce the size by compressing the MoM matrix. This compression is obtained
by numerical generation from RWG functions of quasi-orthogonal synthetic functions based
on a singular value decomposition of the solution currents from a set of independent wave
excitations. Depending on the type of wave excitation, different method can be defined [26]-
[27].

4.9 Exercises to Chapter 4

1. Incremental sources: Evaluate and compare the relative cross-polar levels in dB for the
linearly y-polarized incremental electric and magnetic current sources and the Huygens source,
at θ = 20◦ in the ϕ = 0◦, 45◦ and 90◦ planes. Compare also the level of the back radiation at
θ = 180◦.

2. Incremental sources: Derive the radiation field expressions for RHC polarized incremental
electric and magnetic current sources, as well as for the Huygens source. Find and compare
the relative cross-polar levels in dB at θ = 20◦ in the ϕ = 0◦, 45◦ and 90◦ planes.

3. Incremental dipoles for circular polarization: Consider two orthogonal incremental
dipoles, located at the same point in space; one pointing in x̂ direction with amplitude I0

and 0◦-phase and the other pointing in ŷ direction with amplitude I0 and 90◦-phase. Derive
the expressions for the radiation field. Determine the expressions for the co- and cross-polar
patterns for a desired circular polarization. Sketch the two patterns in a figure. What is the
relative level of the highest cross-polar sidelobe?

4. Hard boundary condition: Extra exercise for those interested in mathematics: Derive the
hard boundary condition in Section 4.1.4 from the general boundary conditions in Section 4.1.2
for the TEz case of a 2D field problem.

5. Magnetic currents: Consider a small rectangular radiating slot in an infinite ground plane.
Assume that the E-field in the slot is E = cos(πx/(2a))ŷ for −a < x < a and −b < y < b
where a� λ and b� λ.
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a) Explain how you can find the radiation field of the slot by using the PEC equivalent,
imaging and the radiation field of a magnetic current distribution in free space. Write the
expression for the radiation field.

b) Find the directivity.

c) Is the boundary condition at the PEC soft or hard in E-plane? What about in H-plane?

6. Circularly polarized Huygens source: Derive the expressions for the radiation field of
the incremental Huygens source from those of the incremental electric and magnetic dipoles.
Construct a Huygens source for circular polarization. Find the co- and cross-polar radiation
patterns in the latter case.

7. Imaging of vertical electric monopole: Consider a vertical short electric current source
on an infinite ground plane. This can, for instance, be the center conductor of a coaxial line
coming out of a hole in the ground plane.

a) Use imaging to find the far-field function, and find thereafter the directivity when we
assume that the vertical source is infinitesimal.

b) Is the boundary condition of this field soft or hard at the PEC?

8. Imaging of horizontal dipole: Consider an horizontal incremental electric dipole located d
above an infinite ground plane.

a) Derive the expression for the radiation field by using imaging when d = λ/4.

b) Is the boundary condition at the PEC soft or hard in H-plane?

c) Why is the far-field zero at the PEC in E-plane? Study the near-field. Is the boundary
condition actually soft or hard at the PEC in this plane?
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Chapter 5

Small wire and slot antennas

In the previous chapter we considered the general theories about how to calculate radiation
fields by integration over known current distributions (Chapter 4) and about how to charac-
terize these radiation fields (Chapter 2). We will now start to apply the theories to practical
antennas. Later on there will be also some general theory in Chapter 6 about apertures. The
present chapter is devoted to small wire radiators such as the monopole, dipole, loop and
helical antennas. We will also study radiation from a small slot in a ground plane when this
is excited in different ways.

5.1 Electric monopole and dipole

We will in this section describe the short wire antenna. In its simplest form it is realized as
a center conductor coming out at the end of a coaxial cable, and it is then called a monopole
antenna. We will study the monopole when it is mounted on an infinite ground plane,
obtained by penetrating the center conductor of the cable through a hole in a large metal
plate and by connecting the shield of the cable (outer conductor) to the metal plate (Fig. 5.1).
We will also study dipole antennas, which are wire antennas excited near the center of the
wire. The excitation of the dipole is normally very complicated since a field transformation is
needed from the rotationally symmetric coaxial feed line to the unsymmetrical dipole. Such
transformations are done by so-called baluns, where the name is an abbreviation resulting
from a transformation between a balanced (two wire) line and a unbalanced (coaxial) line
representing the dipole. Two examples of dipoles above ground with different baluns are
shown in Fig. 5.1. Several other examples of baluns can be found in the literature [1]-
[2].

The present section is based on the theories of incremental electric currents1. We start by
presenting the approximate current distribution on the monopole and the dipole. Thereafter
we find the radiation resistance of the short dipoles. This resistance is very small, but
increases with the length of the dipole, so, we need a certain length in order to get an

1 For more information, see Section 4.4.1.
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λ/4
λ/4

coaxial connectors

Figure 5.1: Monopole antenna on ground plane (left) and two dipoles on ground plane with different
baluns (right).

impedance match to the transmission line. We will show that the optimum length in order
to obtain impedance match to a 75 Ω cable is about half a wavelength.

The actual measured radiation impedance of a practical half-wave dipole will always differ
from the theoretical value. The reason is that the balun and the interaction between the
feed gap and the balun cannot be modelled accurately. It is even difficult to model the
thickness of the dipole arms correctly. We will limit the analysis to the simplest possible,
which is sufficiently accurate for predicting the radiation pattern. It is not accurate for
the impedance, but normally advanced numerical methods do not give better results either.
Therefore, the development of dipole antennas with good impedance match is always done
experimentally. However, calculations are often used with success to estimate the relative
change of the impedance with frequency and dimensions in order to facilitate the experimental
tuning.

5.1.1 Approximate current distribution of monopole

We consider first a vertical and very thin monopole coming up from a little hole in a
ground plane, as shown in Fig. 5.2. We assume that the wave on the coaxial line behind
the ground plane and the fields in the coaxial hole induce a sinusoidal current distribution
on the monopole, of the form

Jl(z
′) = I0 sin

[
k

(
l

2
− z′

)]
/ sin(kl/2)ẑ for 0 < z′ < l/2 , (5.1)

where l/2 is the length of the monopole. We have chosen the length l/2 instead of l in order
to make the formula similar to that of the dipole in the next subsection. The normalization
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Figure 5.2: Geometry (left) and approximate current distribution (right) of monopole and its image.

in (5.1) is chosen in a way that the current is equal to I0 in the coaxial opening (z′ = 0)
and zero at the end z′ = l/2. This current distribution is empirical, but also expected from
intuitive arguments as follows. An open coaxial line without any termination will cause total
reflection with I = 0 at its end and a current varying sinusoidally from the end backwards on
the cable. If we flare out the outer conductor, we can look upon the monopole on the ground
plane as a conical coaxial continuation of the coaxial transmission line, and we may expect
to maintain the sinusoidal current distribution. This expectation is not precise, because
the conical coaxial line radiates, but the thin open cylindrical coaxial line almost does not.
Accurate analysis by means of numerical methods also shows that the current distribution in
reality is very similar to (5.1) for single monopoles on infinite ground planes provided that
the monopole is thin and short. In practice the length l/2 is around λ/4 for which (5.1) is
still an acceptable approximation. The current distribution gradually deteriorates from (5.1)
when l/2 becomes longer than λ/4. See also the discussion at the end of the next subsection.
When the reactive part of the input impedance is zero, the monopole is said to be resonant.
This appears when l/2 ≈ λ/4.

When the monopole has a finite thickness up to t = 0.1λ, the current distribution in (5.1) is
still a useful approximation if we introduce an equivalent length l/2 = lc/2 + t/2 where lc/2 is
the length of the metal cylinder representing the monopole, see Fig. 5.2.

By using (5.1) we also assume that the current is floating along the center of the wire instead
of its surface which it does in reality. This assumption is commonly referred to as the thin
wire approximation.

The far-field function including the effect of the infinite ground plane can be calculated by
making use of imaging2. The result is a total current as

Jl(z
′) = I0 sin

[
k

(
l

2
− |z′|

)]
/ sin(kl/2)ẑ for 0 < |z′| < l/2 . (5.2)

2 See Section 4.6.
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Figure 5.3: Geometry (left) and approximate current distribution (right) of dipole in free space.

5.1.2 Approximate current distribution of dipole

In practice a dipole consists of two aligned quarter wavelength long cylinders, which are
called the dipole arms and most often have circular cross-section. The arms are separated
by a feed gap where they are in metal contact with the feed cable or with the balun.

In analytical modeling it is common to replace the cylindrical dipole arms by line currents
located along the center line of the arms (the thin wire approximation), and to assume that
the effective length of the line current is l = lc + t with a short feed gap over which there is
an electric current generator providing a constant current I0 (Fig. 5.3). The variable t is the
wire thickness. It is also common to neglect the effect of the connecting transmission line
and the balun. The current distribution of this idealized dipole is approximately given by

Jl(z
′) = I

0
j(z′)ẑ ,

with j(z′) = sin

[
k

(
l

2
− |z′|

)]
/ sin(kl/2) for |z′| < l/2 .

(5.3)

Note that Jl = I0 ẑ for z′ = 0 and that Jl is not smooth at z′ = 0 unless l = λ/2. In reality the
current distribution will depend on the wire thickness t and length l, the size of the feed gap.
Furthermore, it also depends on the surrounding structure, such as the feed line, the balun,
a possible shield around the feed line and the balun, a possible ground plane, and possible
neighboring dipoles in an array.

The current distribution in (5.3) is a good approximation for center-fed straight thin wire
antennas in free space. Unfortunately, real antennas are not located in the free space. Still,
the approximate current distribution is usable for the monopole (see Subsection 5.1.1) even
when it is significantly longer than λ/4, provided it is located vertically on a large ground
plane. The reason is that the environment of the monopole is very clean, resembling free space
after imaging, for which the approximate current distribution is quite accurate. However,
when studying half-wave dipoles the surroundings are not so clean. Even when neglecting
the feed gap, feed line and balun, there will in most cases be a ground plane or neighboring
dipoles present. In this case imaging in the ground plane does not correspond to a pure
lengthening of the dipole like for the monopole. The ground plane causes an image dipole at
another location which will effect the current distribution by mutual coupling. Still, (5.3) is
usable as an approximation when l < 0.7λ typically. It represents a good approximation up
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to l ≈ 0.5λ even when there are other disturbing elements present. The most common length
of practical dipole antennas is 0.5λ. A dipole is said to be resonant when the reactive part
of its input impedance is zero. This appears when l ≈ 0.5λ.

5.1.3 Far-field function of dipole

When the dipole is oriented in an arbitrary direction l̂, we can write

Jl(l
′) = I

0
j(l′)̂l ,

with j(l′) = sin

[
k

(
l

2
− |l′|

)]
/ sin(kl/2) for |l′| < l/2 .

(5.4)

When the center of the dipole is located at the origin of the coordinate system, we obtain
the following radiation field by using the equations in Section 4.2.2;

Ed(r) =
1

r
e−jkrGd(r̂) ; Gd(r̂) = ηI0Gid(r̂)j̃(kl̂ · r̂) , (5.5)

where Gid(r̂) = Ck [̂l− (̂l · r̂)r̂] (5.6)

and j̃(kl̂ · r̂) =

∫ l/2

−l/2
j(l′)ejkl

′ l̂·r̂dl′ , (5.7)

with the incremental source constant Ck = −jk/4π. We see that the far-field function of the
electric dipole is written as a product of three factors. They are:

1. The current excitation I0 at the feed gap,

2. the far-field function Gid(r̂) of the incremental electric current with unit amplitude,
which we will refer to as the incremental current factor, and

3. the Fourier transform j̃(kl̂ · r̂) of the current distribution along the dipole, which we
will refer to as the current distribution factor j̃.

The latter is easily recognized as a Fourier transform by substituting x = l′ and kx = kl̂ · r̂
in the exponent of the integrand. This factorization of the far-field function applies to all
current distributions that are located along straight lines and radiate in free space.

The Fourier transform in (5.7) can be evaluated analytically by using the integral∫
eαx sin(βx+ γ)dx = eαx

1

α2 + β2
[α sin(βx+ γ)− β cos(βx+ γ)] .

The result is

j̃(kl̂ · r̂) =
2

k

[cos(kl̂l · r̂/2)− cos(kl/2)]

[1− (̂l · r̂)2] sin(kl/2)
. (5.8)

This expression can conveniently be numerically evaluated for arbitrary orientations l̂. We
will still restrict the expression to l = λ/2 and two specific orientations of l̂ in order to discuss
the results.

Let us first consider a vertical dipole oriented in z-direction with l̂ = ẑ. This may correspond
to a monopole over a ground plane. When l = λ/2, by using l̂ · r̂ = cos θ we get

j̃(kl̂ · r̂) = j̃(k cos θ) =
2

k
cos
(π

2
cos θ

)
/ sin2 θ . (5.9)
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Figure 5.4: ?Radiation pattern of half-wave dipole: (a) Normalized E-plane pattern, (b) 3D plot
when it is y-polarized on the z-axis.

Moreover by using ẑ− (ẑ · r̂)r̂ = − sin θθ̂, this gives the far-field function

Gdz(θ) = −CkηI0

2

k
cos
(π

2
cos θ

)
/ sin θθ̂ . (5.10)

We see that radiation field of the vertical dipole has complete rotational symmetry. It radiates
as a BOR0 type antenna, and it is applicable as an impressed source for exciting more complex
BOR0 antennas made of rotationally symmetric structures.

When the dipole is transverse y-directed with l̂ = ŷ and l = λ/2 by using l̂ · r̂ = sin θ sinϕ we
obtain

Gdy(θ, ϕ) = CkηI0
(cos θ sinϕθ̂ + cosϕϕ̂)j̃(θ, ϕ) , (5.11)

with j̃(kŷ · r̂) = j̃(θ, ϕ) =
2

k
cos
(π

2
sin θ sinϕ

)
/[1− (sin θ sinϕ)2] . (5.12)

We see that the H-plane pattern is constant, and that the E-plane pattern is j̃(θ, 90◦) cos θ =

cos((π/2) sin θ)/ cos θ. Fig. 5.4 shows the E-plane pattern and compare it with the correspond-
ing pattern of the incremental dipole3. The half-wave dipole is seen to be only slightly more
directive than the incremental dipole. The patterns of the short dipole is the same as those
of the incremental dipole in (4.70), see also (5.19).

The radiation field of a y-directed dipole is very similar to a BOR1 antenna with different E-
and H-plane patterns. It is not precisely a BOR1 antenna as defined in Section 2.4.2 because
the current distribution factor given by (5.12) has a ϕ-variation in addition to the ϕ-variation
of the incremental dipole factor. Still, the relative cross-polarization in a given ϕ-plane is
only due to the incremental dipole factor. If we evaluate the co- and cross-polar patterns
of (5.11), by using the polarization vectors in (2.55) - (2.56) and the BOR1 relations in (2.83)
- (2.87) we achieve

Gco = Gd(θ) · ĉo∗ = Gco45◦ (θ, ϕ)−Gxp45◦ (θ, ϕ) cos 2ϕ , (5.13)

Gxp = Gd(θ) · x̂p∗ = Gxp45◦ (θ, ϕ) sin 2ϕ , (5.14)

3 There exist Matlab code for all figures of which the caption start with ?.
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Figure 5.5: Relative power in the BOR1 mode relative to the total radiated power of a transverse
dipole.

where Gco45◦ (θ, 45◦) = CkηI0 j̃(θ, 45◦)
1

2
(1 + cos θ) (5.15)

and Gxp45◦ (θ, 45◦) = CkηI0
j̃(θ, 45◦)

1

2
(cos θ − 1) . (5.16)

The equations (5.15) and (5.16) describe the co- and cross-polar patterns in the ϕ = 45◦-plane
respectively. If the half-wave dipole had been an ideal BOR1 antenna, all ϕ-variations had
been in the cos 2ϕ and sin 2ϕ factors, i.e., we would have had Gco45◦ (θ, ϕ) = Gco45◦ (θ) and
Gxp45◦ (θ, ϕ) = Gxp45◦ (θ).

However, if we study the ϕ variation of the current distribution factor j̃(θ, ϕ) we will find
that it is negligible for l < λ/2, in particular near θ = 0◦ and θ = 180◦. Thus, we may often
omit it. This is clear from Fig. 5.5 which shows the relative power in the first order BOR1

mode compared to the total radiated power as a function of the length of the dipole?. Also,
if the half-wave dipole is used to excite complex rotationally symmetric structures, the effect
of the higher order ϕ-modes in the resultant pattern will almost always be negligible, so that
the resulting antenna will be a BOR1 type.

5.1.4 Directivity and radiation resistance of short dipole

When the dipole is much shorter than a half wavelength (l � λ/2), the current distribution
in (5.4) becomes triangular. That is,

jl(l
′) = (1− 2|l′|/l) for |l′| < (l/2) . (5.17)

Thus, the radiation integral in (5.7) becomes

j̃(kl̂ · r̂) ≈
∫ l/2

−l/2
(1− 2|l′|/l)dl′ = l − (2/l)(l/2)2 = l/2 . (5.18)

This result can also be obtained by expanding (5.8) for small l. The far-field function becomes

Gid(r̂) = ηI
0
(l/2)Ck [̂l− (̂l · r̂)r̂] . (5.19)
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Figure 5.6: Short dipole (left) and its equivalent circuit on reception (right).

This is the same as that of an incremental electric current of length l/2. The reason for the
discrepancy in the lengths is that the current distribution is constant along the incremental
electric current and triangular along the present short dipole. To find the directivity, let
us now solve the power integral P as defined in Section 2.3.8. The power integral must be
the same for all orientations of the dipole, so we choose l̂ = ẑ as this gives a rotationally
symmetric beam which is simpler to integrate. Then, we obtain

P =

∫ 2π

0

∫ π

0

|Gid|2 sin θdθdϕ = |CkηI0 l/2|2
8π

3
, (5.20)

by using that∫ π

0

sin3 θdθ =

∫ π

0

(sin θ − cos2 θ sin θ)dθ =

[
− cos θ +

1

3
cos3 θ

]π
0

=
4

3
.

From this, the directivity becomes

D0 =
4π|Gid|2max

P
=

4π|CkηI0 l/2|2
|CkηI0

l/2|2 8π
3

=
3

2
(i.e., 1.76 dBi) . (5.21)

The total radiated power can also be expressed as Prad = P/(2η) = (1/2)|I0 |2Rrad, where Rrad

is the radiation resistance4. This relation can be used to calculate Rrad, as we know P as a
function of I0 from (5.20). We have (by using also that η ≈ 377 Ω ≈ 120πΩ)

Rrad =
2Prad

|I
0
|2 = η

2π

3

(
l

2λ

)2

≈ 20π2

(
l

λ

)2

Ω . (5.22)

We see that the radiation resistance is very small. When l = 0.01λ we get Rrad = 0.02 Ω,
and when l = 0.1λ we have Rrad = 2 Ω. Coaxial cables have characteristic impedances of
50 Ω or 75 Ω, so we understand that a short dipole will have very low radiation efficiency
if it is fed by a coaxial cable. The short dipole has also a large reactance, which will be
studied in Sectioin 5.1.7. The reactance is negative, which means that the short dipole is
capacitive.

5.1.5 Equivalent circuit and maximum effective aperture of short
dipole

The relation between the maximum effective aperture of a receiving antenna and the direc-
tivity when the antenna is transmitting was introduced in Section 2.5.2. This relation is

4 See Section 2.6.1.
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general and can be derived by using the reciprocity relations in Section 4.5.2. We study it for
a short dipole by using the formulas in the previous Subsection, as follows. The maximum
effective area Aem is defined by

Aem =
P
L

Wi
=

Power delivered to conjugate matched load

Power density of incident wave
. (5.23)

The maximum power is delivered to the load when the load impedance ZL is conjugate
matched to the dipole impedance Zrad, i.e., when

Z
L

= Z∗rad = Rrad − jXrad (5.24)

all according to Section 2.6.1. The power delivered to the load is

P
L

=
1

2
R
L
|I
L
|2 . (5.25)

The current in the load can be calculated from the equivalent circuit in Fig. 5.6. Due to the
conjugate match we find it to be

I
L

=
Vid

2Rrad
. (5.26)

In Fig. 5.6 Vid is seen to be the induced voltage over the port of the short dipole when the
load is removed. We now use (2.129) to express Vid in terms of the amplitude E∞ of the
incoming plane wave. The far-field function in (5.19) has the maximum ηI0(l/2)Ck in the
direction normal to l̂, with Ck = −jk/4π. The latter together with (2.129) yield

Vid = −2jλ(l/2)CkE∞ = −E∞(l/2) ,

where we have assumed that E∞ = E∞ l̂.

Alternatively, by using the reaction integral in (4.82), we can also express Vid in terms of
E∞ as follows. Study the four cases (a) to (d) in Fig. 5.7. Assume that there is an antenna
with a source I∞ somewhere in infinity which produces a plane wave with E-field amplitude
E∞ at the location of the dipole (case (a)). This plane wave causes a voltage Vid over the
input terminals of the dipole. If we instead excite the dipole with the current source I0 , and
we measure the voltage V∞ over the terminals of the antenna at infinity (case (b)), from
reciprocity we have5

−VidI0
= −V∞I∞ . (5.27)

In cases (c) and (d) we have replaced the metal dipole arms by their line current Jl(l). Jl(l)

has the value I0 at the center, so cases (b) and (c) produce the same field at infinity and
hence the same voltage V∞ at the terminal there. Therefore, the reaction between Jl(l) and
E∞ must be equal to the reaction between I∞ and V∞, i.e.,∫ l/2

−l/2
(E∞ · Jl(l′))dl′ = −V∞I∞ . (5.28)

By combining (5.27) and (5.28) we obtain the following expression for Vid

Vid = − 1

I
0

∫ l/2

−l/2
(E∞ · Jl(l′))dl′ = −

∫ l/2

−l/2
E∞jl(l

′)dl′ = −E∞l/2 . (5.29)
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Figure 5.7: Illustration of the reciprocity relations in (5.27) and (5.28).

The latter two expressions in (5.29) are obtained by using (5.17) and aligning l̂ with E∞.
The result in (5.29) is similar to what we obtained by using (2.129) directly.

The power density of the incoming wave is

Wi =
1

2η
|E∞|2 . (5.30)

Finally, by inserting (5.25), (5.26) and (5.30) into (5.23) we arrive at:

Aem =
1
2RL
|I
L
|2

Wi
=
|E∞l/2|22η

8Rrad|E∞|2
=
l2η

16

(
12λ2

2πηl2

)
=

3

8π
λ2 . (5.31)

Therefore, the short dipole has an effective aperture of

Aem =
3

8π
λ2 = 0.119λ2 . (5.32)

5 See Section 4.5.3.
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Recalling the directivity D0 = 3/2, we see the following general relation holds:

Aem =
λ2

4π
D

0
, (5.33)

which was introduced in Section 2.5.2.

5.1.6 Directivity and radiation resistance of half-wave dipole

Let us now consider the half-wave dipole. The power integral is most easily evaluated when
the dipole is oriented vertically, in the same way as we chose for the short dipole. Then,

Pdp = 2π

∫ π

0

|Gd(θ)|2 sin θdθ . (5.34)

This integral has an analytic solution, but this is so complicated that it does not have any
advantage over a numerical solution, which is easily evaluated. The result gives the following
directivity when l = λ/2:

D
0

= (4π|Gd|2max)/Pdp = 1.643 (i.e., 2.16 dBi) , (5.35)

where |Gd|2max = |Gd(π/2)|2. Thus, the directivity of the half-wave dipole is 0.4 dB larger than
that of the short dipole.

We can now find the radiation resistance Rdp as follows. The total radiated power Prad =

Pdp/(2η) according to (2.65). Using (5.35), we can write

Pdp = 4π|Gd|2max/D0
; |Gd|2max = |CkηI0

2/k|2 ,

which was achieved, by setting θ = π/2 in Eq. (5.10). The power dissipated in the radiation
resistance is

Prad = (1/2)Rdp|I0
|2 .

Therefore,

Rdp =
2Prad

|I0 |2
=

Pdp

η|I0 |2
=

4π

D0

η

∣∣∣∣Ck 2

k

∣∣∣∣2 =
η

πD0

≈ 73 Ω . (5.36)

This is a good number as it is close to the characteristic impedances of commercial coaxial
cables which are 50 or 75 Ω. Therefore, the half-wave dipole can easily be matched to the
feed cable with high radiation efficiency. The complete radiation impedance including the
reactance will be found in the next subsection.

The half-wave dipole has approximately a sinusoidal current distribution independent of how
it is excited and where in a structure it is located6. This is not true for dipoles of longer
lengths, which have almost sinusoidal distribution only when they are excited by a narrow
feed gap at the center and radiate in free space. However, even if the current distribution of
a half-wave dipole is unchanged by a surrounding structure, its impedance will change due
to the coupling.

6 This was discussed in Section 5.1.2 on page 170.
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Figure 5.8: Development of the impedance calculation model for an electric dipole (upper) and its
cross-section in the feed gap (lower).

5.1.7 Self-impedance of electric dipole

We will now use the Method of Moments and the reciprocity theorem to develop the classical
formula for the full complex radiation impedance also called self-impedance of a dipole. The
explanation will follow cases (a)-(d) in Fig. 5.8. We consider first the physical dipole in case
(a), consisting of two metal (PEC) cylinders with a feed gap δ between them, and with an
ideal current source I0 in the feed gap connected to the centers of the cylinders. The current
source produces an electric field E0 over the feed gap, and it is clear that the self-impedance
will be given as

Zd = V
0
/I

0
, (5.37)

where V0 = −E0δ is the voltage induced over the feed gap.

In order to find the relation between E0 and I0 we need to introduce an electromagnetic
analysis model. We do this by using the PEC equivalent to remove the feed gap and replace
the field E0 by a magnetic ring-shaped so-called frill current (case (b))

M
0

= −E
0
ẑ× ρ = −E

0
ϕ̂ for − δ/2 < z < δ/2 . (5.38)

Further, we use the physical equivalent to replace the metal cylinder by an induced electric
surface current distribution J(z, ϕ) (case (c)). Next, we use the thin wire approximation.
This means that we assume that J(z, ϕ) is rotationally symmetric and can be replaced by
an axial line current Jl(z) = 2πaJ(z, ϕ) = I0jl(z

′)ẑ (case (d)). The current distribution Jl(z)

is unknown, but can be determined by applying the boundary condition that the total field
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must be zero at the surface of the cylinder, i.e.,

V
0
Em(ra) + I

0
Ej(ra) = 0 , (5.39)

for −l/2 < z < l/2 where Em(ra) = EM (ra)/V0 is the field in free space at ra = aρ̂ + zẑ due
to a normalized magnetic current m = M0/V0 = −ϕ/δ. And, Ej(ra) is the field in free space
due to the normalized current distribution jl(z)ẑ = Jl/I0 . Eq. (5.39) defines also an integral
equation for determining jl(z). For thin dipoles shorter than l ≈ λ/2 we already know that
the solution is quite accurately given by (5.3). Let us therefore continue by assuming (5.3)
for jl(z), corresponding to solving the integral equation by using the Method of Moments
with one basis function. The solution will give us the desired relation between I0 and E0 . We
do this by using Galerkin’s method, i.e., by satisfying the boundary condition in weighted
average over the interval (−l/2, l/2) by using the basis function jl(z) also as weighting function.
Doing this, we get

V
0

∫ l/2

−l/2
Em(ra) · jl(z)ẑdz + I

0

∫ l/2

−l/2
Ej(ra) · jl(z)ẑdz = 0 . (5.40)

We recognize the former of these two integrals as the reaction between the fields Em (due to
m = −ϕ̂/δ) and the source jl(z)ẑ. This reaction must according to reciprocity7 be equal to
the reaction between the H-field Hj (due to jl(z)ẑ) and the source m = −ϕ̂/δ, i.e.,

〈Em(ra), jl(z)ẑ〉 = 〈Hj ,m〉 . (5.41)

We can find Hj as follows. Consider the actual current distribution j(z, ϕ) = jl(z)/(2πa) at
the circumference of the dipole corresponding to jl(z)ẑ along its center. The H-field at the
surface and the current density are related by j(z, ϕ)ẑ = ρ̂×Hj (from Eq. (4.14)) where ρ̂ is
the radial unit vector normal to the cylindrical surface of the dipole. This gives Hj = ϕ̂/(2πa)

at z = 0. Furthermore, m = −(1/δ)ϕ̂, so the right side of (5.41) becomes

〈H
J
,m〉 = −

∫ δ/2

−δ/2

∫ 2π

0

H
J
·madϕdz = 1 . (5.42)

We finally obtain from (5.40) the expression for the self-impedance in free space

Zd =
V

0

I0

= −
∫ l/2

−l/2
Ej(ra) · jl(z)ẑdz . (5.43)

This expression corresponds to calculating Zd by using the voltage

V
0

=

∫ l/2

−l/2
Ej(ra) · jl(z)ẑdz ,

which in classical text books is referred to as the voltage calculated by “electromagnetic force”.
What we have done is to derive the electromagnetic force expression by using a modern
Method of Moments argumentation. We can also express (5.43) by using the definition of
the reaction integral in the following way:

Zd = − 1

I2
0

〈I0Ej(ra), I0jl(z)ẑ〉 .

7 Use the third reciprocity relation in Section 4.5.2 on page 146.
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This expression is seen to be equal to the self-reaction of a current cylinder normalized to
the square of the total current I0 = Jl(0) · ẑ passing through the feed gap location. The above
derivation is general and valid also for other feed gap locations. Therefore, the self-impedance
of a dipole fed at center at z = zgap is

Zd = − I2
0

Iz2
gap

〈E
J
(ra), jl(z)ẑ〉 , (5.44)

where Izgap = I0jl(zgap) is the value of the total current passing through the feed gap. Ej(ra)

are in all these equations the field due to the axial normalized current jl(z′) evaluated at the
surface ra = aρ̂+ zẑ of the dipole arms, i.e.,

Ej(ra) = Ck

∫ l/2

−l/2
[ηjl(z

′)ẑC
N1
− (ηjl(z

′)ẑ · R̂)R̂C
N2

]
1

R
e−jkRdz′ , (5.45)

with R = |ra − r′| =
√
a2 + (z − z′)2, and R̂ = (aρ̂+ (z − z′)ẑ)/R. Recall that Ck and the near

field functions CN1
and CN2

are given in Section 4.2.1.

These self-impedance expressions are in principle also valid for infinitely thin dipoles. How-
ever, they cannot be evaluated for the foregoing case due to the severe singularities of CN1

and CN2
at a = 0. These singularities are called source point singularities. We could also

have written down the expressions in (5.43) and (5.44) more or less directly by using the
general expressions for the self-impedance of current distributions in Section 4.5.4. See also
the next subsection.

5.1.8 Impedance of cylindrical and flat electric dipoles

The easiest way to evaluate the impedance formula in (5.44) is not to use (5.45), but rather the
near-field algorithm described in Section 4.7.1. The results of such evaluations are presented
in Fig. 5.9?. We have used a segment length of ls = 0.005λ. The derivations in the previous
subsection can also be used to find the self-impedance of an electric strip dipole with a feed
gap. In the same way this becomes the self-reaction of the assumed current distribution
normalized to the square of the total current passing through the location of the feed gap. In
this case we can evaluate the impedance by using the near-field algorithm in Section 4.7.2.
Such results are presented in Fig. 5.9 as well?. In this case we have used a segment length of
l = 0.0025λ.

The results are discussed below:

1. The real and imaginary parts (R and X, respectively) of the impedance Z of electric
dipoles are presented in Fig. 5.9b. The resistance R increases with length (over the
range shown). The values are not at all sensitive to thickness and whether the arms
are cylindrical or flat, at least as long as the thickness (or width) is small compared to
the length. This is understandable by comparing with the results in Subsection 5.1.6
where we evaluated the radiation resistance from the radiation field, which does not
depend on the cross-sectional shape of the dipole arms, as long as the diameter is small.
On the other hand, the reactance X is seen to depend strongly on the thickness and
cross-sectional shape. The same dependencies are also present in the numerical models
used. The resistance converges easily and fast, whereas the reactance is very sensitive
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to the approximations used in the evaluation of the near-field. The resonance frequency
is the frequency for which X = 0. This reduces when the thickness or width increases,
in agreement with the discussions in Subsection 5.1.2.

2. The reflection coefficient in terms of a line impedance of 50 Ω is shown in Fig. 5.9a. We
see that dipoles can be reasonably well matched to 50 Ω, even if the dipole resistance
normally is considered to be 73 Ω. The reason is that resonance normally appears when
the dipole is shorter, and then the resistance is smaller than when it is half wavelength
long. The reflection coefficient is normally presented relative to 50 Ω because this is a
standard cable impedance. We also see that the bandwidth of a half-wave dipole seems
to increase when the thickness increases. Note that the curves present variations with
l/2 for fixed a/λ. This is not really the same as relative variations with frequency for
a given dipole with fixed thickness. However, the impedance varies slowly with a/λ, so
therefore the curves indicate actual bandwidths.

3. The real (conductivity G) and imaginary (susceptance B) parts of the admittance
Y = 1/Z are shown in Fig. 5.9c for a selected arm thickness. The values are normalized
to 50 Ω = 0.02 Siemens. We see that the admittance has a typical resonant behavior with
a peaked real part G at the point where the imaginary part B is zero.

We can draw the following general conclusion from the above discussions: A resonant antenna
which is excited at a current maximum has an input resistance which is not sensitive to
variations in the geometry and the analysis model, whereas the reactance is very sensitive to
both such variations. The input admittance shows a typical resonant behavior characterized
by a conductance peak at the resonance frequency where the susceptance is zero.

Resonant slot antennas are excited at a voltage maximum and therefore behave in an opposite
way, see page 197.

5.1.9 Dipole at arbitrary location

The far-field function in Section 5.1.3 was derived for the case that the dipole had its center
in the origin of the coordinate system. We will now find the far-field function when the
dipole is moved to a new location r0 (see Fig. 5.10). Then, the coordinates of the source are
described by

r′(l′) = r
0

+ l′̂l for − l

2
< l′ <

l

2
. (5.46)

We again use (4.54) for this source, where now

r′ · r̂ = r
0
· r̂ + l′̂l · r̂ , (5.47)

with r0 · r̂ being constant, independent of l′. This means that a factor ejkr0 ·r̂ can be taken
outside the integral sign in (4.54), and the remaining integrand is the same as for the dipole
located in the origin. Therefore, we may write the far-field function by using (5.5) as

Gd(k, I0 , l, l̂, r0 , r̂) = CkηI0 [̂l− (̂l · r̂)r̂]j̃(kl̂ · r̂)ejkr̂0
·r̂ , (5.48)

where all the parameters have been defined before and j̃(kl̂·r̂) is the same radiation integral as
in (5.8). Compare this change of location of the dipole with the change of the phase reference
point in Section 2.3.4. Note that moving the source and moving the phase reference point
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Figure 5.10: Electric dipole at arbitrary location r0 (left), and dipole above ground with its image
(right).

are opposite actions. The phase reference point of the far-field function in (5.48) is still the
origin of the coordinate system. Expression (5.48) is very general as the dipole can have any
location r0 and orientation l, so it is well suited for programming. All the vectors can be
programmed in rectangular coordinates.

Several dipoles with different orientations and locations in the same coordinate system can be
superimposed as follows. If the far-field function of each of them is calculated by (5.48), they
will have the same phase reference point (the origin). Therefore, the total far-field function
is obtained by simply adding the contributions of each one.

5.1.10 Arbitrary dipole above ground

Dipole antennas are often located above an electric conducting plate which is commonly
referred to as the ground plane. In consequence, the radiation field is directed into half-space
becoming a unidirectional radiation pattern. We will here use the image theory8 to calculate
the radiation field. This means that we will neglect the finite size of the ground plane. The
ground plane is assumed to coincide with the xy-plane with normal n̂ = ẑ.

We assume that the electric dipole with far-field function given by (5.48) is located at a point
rd = hẑ, i.e., a height h above the ground (see Fig. 5.10). Then, the coordinates of the dipole
is described by r′(l′) = hẑ + l′̂l, and its far-field function is obtained from (5.48) to be

Gd(k, I0 , l, l̂, hẑ, r̂) = CkηI0 [̂l− (̂l · r̂)r̂]j̃(kl̂ · r̂)ejkhẑ·r̂ . (5.49)

The location of the image dipole is described by (4.101) and (5.46), giving

rimg(l′) = r′(l′)− 2[r′(l′) · n̂]n̂

= hẑ + l′̂l− 2hẑ− 2l′(̂l · ẑ)ẑ = (−hẑ) + l′̂limg ,
(5.50)

8 The image theory can be found in Section 4.6 on page 150.



5.1. ELECTRIC MONOPOLE AND DIPOLE 184

with
l̂img = l̂− 2(̂l · ẑ)ẑ . (5.51)

From (4.102) and (5.4) the image current distribution becomes

Jimg = −[J− 2(J · ẑ)ẑ] = −I
0
j(l′)̂limg . (5.52)

Therefore, the far-field function of the image dipole is obtained from (5.48) as

Gd(k,−I0
, l, l̂img,−hẑ, r̂) ,

and the total far-field function of the dipole above ground plane becomes

Gdg(r̂) = Gd(k, I0
, l, l̂, hẑ, r̂) + Gd(k,−I0

, l, l̂img,−hẑ, r̂) . (5.53)

Note that Gdg(r̂) is a valid field solution only above the ground plane. Under the ground
plane Gdg(r̂) = 0. It is clear that Gdg(r̂) can be easily computed by using a general subroutine
for Gd(k, I0 , l, l̂, r0 , r̂). The above approach is very general and can be extended to other type
of antennas above the ground.

We will now restrict ourselves to vertical and horizontal dipoles in order to get simple ana-
lytical expressions. This helps us to gain some physical insight into how the ground plane
affects the far-field function.

5.1.11 Vertical dipole above ground

The vertical dipole above the ground is shown to the left in Fig. 5.11. Then, we have

l̂ = ẑ , l̂img = −ẑ , l̂ · r̂ = cos θ ,

l̂− (̂l · r̂)r̂ =ẑ− (ẑ · r̂)r̂ = − sin θθ̂ ,

l̂img · r̂ = − cos θ and l̂img − (̂limg · r̂)r̂ = sin θθ̂ .

Using these in combination with (5.48) and (5.52), we obtain:

Gvdp(r̂) = −CkηI0 sin θj̃(kr̂ · ẑ)[ejkh cos θ + e−jkh cos θ]θ̂ . (5.54)

It is also possible to set up (5.54) directly from a study of Fig. 5.109. For the half-wave
dipole, by combining the two exponential terms within the brackets and using (5.9), we
achieve:

Gvdp(r̂) = −CkηI0

2

k

[
cos
(π

2
cos θ

)
/ sin θ

]
2 cos(kh cos θ)θ̂ , (5.55)

for θ < 90◦. We see that the far-field function is given as a product of the far-field function
of the vertical half-wave dipole in free space multiplied with a ground plane factor which
is 2 cos(kl cos θ). It is important to be aware that this ground plane factor is different for
different orientations of the dipole. Also note that in more complicated antennas the far-field
function cannot be factorized in this way. We can only define special ground plane factors
when the source and its image has the same or opposite orientations. The source also needs
to have a far-field function which is symmetric or antisymmetric around the plane defined by
θ = π/2, where the direction θ = 0 is normal to the ground plane. These two conditions are
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Figure 5.11: Vertical (left) and horizontal (right) dipoles above ground.

very seldom satisfied for other antennas than dipoles. Note that (5.55) is valid in the source
region 0◦ ≤ θ ≤ 90◦. In the null-field region below the ground plane Gvdp(r̂) = 0.

The directivity and radiation resistance can be determined in the same way as for the isolated
dipole. This is most easily done by numerical evaluation of the integrals. It is also possible to
use an approach in which the mutual coupling to the image is evaluated. We can get simple
analytical results by studying a short dipole over the ground . Then, the far-field function is

Gvdp(r̂) = −CkηI0
(l/2)(sin θ)2 cos(kh cos θ)θ̂ . (5.56)

The power integral for the incremental dipole becomes

P = 2π

∫ π/2

0

|Gvdp(r̂)|2 sin θdθ

= 8π|CkηI0
(l/2)|2 +

∫ π/2

0

cos2(kh cos θ) sin3 θdθ .

(5.57)

The latter integral can be evaluated analytically by substituting u = cos θ and du = − sin θdθ,
and reducing it to some known integrals. The result gives the following directivity

D
0

= 2

[
1

3
− cos(2kh)

(2kh)2
+

sin(2kh)

(2kh)3

]−1

, (5.58)

and radiation resistance

Rrad = 2πη

(
l

2λ

)2 [
1

3
− cos(2kh)

(2kh)2
+

sin(2kh)

(2kh)3

]
. (5.59)

The radiation pattern of the short dipole above the ground is shown in Fig. 5.12?, and the
radiation resistance and directivity in Fig. 5.13?. We see that the radiation pattern has

9 It is recommended to do this as an exercise.
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Figure 5.12: ?Radiation patterns of a vertical short electric dipole for different heights above an
infinite PEC plane. (a) and (b) E-plane pattern for different heights. (c) 3D plots for different
heights.

several lobes when h ≥ 0.375λ due to the ground plane factor. The directivity is seen to be
3 dB larger than for a short dipole in free space when h = 0. The reason for this is evident
from the formulas in the next section, as a short dipole has a radiation pattern which does
not depend on its length. The directivity is 6 dB larger than that of a dipole in free space
when h > 0.5λ. The reason for this is that when the dipole and its image is far away from each
other, the far-field function will double its amplitude in the main beam direction, whereas
the total radiated power is unaffected by the presence of the image dipole.

5.1.12 Vertical monopole

The far-field function of the vertical monopole has to be the same as that of a vertical dipole
of the double length because the total current distribution of the monopole plus its image is
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Figure 5.13: ?Directivity and radiation resistance of a vertical short electric dipole as a function of
its height above an infinite PEC plane. The length of the dipole is l = λ/50.

the same as for the dipole. Therefore,

Gm(r̂) =

{
−CkηI0 sin θj̃(kr̂ · ẑ)θ̂ for θ < π/2

0 for θ > π/2
. (5.60)

The power integral becomes

Pmon = 2π

∫ π/2

0

|Gm(θ)|2 sin θdθ =
1

2
Pdp , (5.61)

which is half that of the half-wave dipole in (5.34). Therefore, the radiation resistance of the
monopole is

Rmon =
1

2
Rdp , (5.62)

where Rdp is the impedance of the half-wave dipole given in (5.36).

5.1.13 Horizontal dipole above ground

The horizontal dipole above the ground is shown to the right in Fig. 5.11. Then we have

l̂img = l̂ = ŷ , l̂ · r̂ = ŷ · r̂ = sin θ sinϕ ,

and ŷ− (ŷ · r̂)r̂ = cos θ sinϕθ̂ + cosϕϕ̂ .

Using these and together with (5.48) and (5.52), we get

Ghdp(r̂) = CkηI0
j̃(kl̂ · r̂)(cos θ sinϕθ̂ + cosϕϕ̂)(ejkh cos θ − e−jkh cos θ) . (5.63)

Finally by combining the two exponential terms within the brackets, we get

Ghdp(r̂) = CkηI0
(cos θ sinϕθ̂ + cosϕϕ̂)j̃(kl̂ · r̂)2j sin(kh cos θ) . (5.64)
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Figure 5.14: ?Radiation patterns of horizontal short electric dipole for different heights above an
infinite PEC plane. (a) and (b) E-plane (φ = 90◦) patterns. (c) Co- and cross-polar patterns for
h = 0.25λ.

We see that the ground plane factor is very different from that of a vertical dipole. Similarly
for a short dipole we attain

Ghdp(r̂) = CkηI0
(l/2)(cos θ sinϕθ̂ + cosϕϕ̂)2j sin(kh cos θ) . (5.65)

The pattern of the latter is plotted in Fig. 5.14 for different heights above the ground?. We
see that the pattern have several lobes when h > 0.5λ. The radiation resistance and the
directivity in the vertical θ = 0◦ direction are calculated by numerical integration and shown
in Fig. 5.15?. We see that the radiation resistance is zero when h = 0. This corresponds
to a short-circuited feed gap. When h = λ/4 the resistance is close to that in free space,
and it oscillates around this and approaches it asymptotically when h increases further. The
directive gain for θ = 0◦ oscillates between minus infinity and 7.8 dB, depending on whether
the dipole and its image interfere destructively or constructively in the θ = 0◦ direction. 7.8 dB

is four times (i.e., 6 dB) more than the directivity of the short dipole in free space.

We have also evaluated the impedance of a horizontal half-wave dipole over the ground by
using the self-reaction formula in (5.44), imaging, and the near-field algorithm. The resulting
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Figure 5.15: ?Radiation resistance and directive gain (θ = 0◦) of a horizontal short electric dipole
at height h above an infinite PEC plane.

reflection coefficients with respect to 50 Ω are shown in Fig. 5.16 for different thicknesses and
heights?. We see that an electric dipole easily can be matched to 50 Ω by tuning its length
and height. The impedances and admittances show similar characteristics as for a dipole in
free space10.

5.2 Electric loop antenna as vertical magnetic dipole

The loop antenna is a circular metal ring fed by a coaxial cable and a balun at some point
along the ring. When the circumference is much smaller than λ we may assume that the
current is constant around the ring. In addition if we use the thin wire approximation we
can express the ring current as (see Fig. 5.17)

Jl(r
′) = I

0
ϕ̂′ for r′ = aρ̂′(ϕ′) , 0 < ϕ′ < 2π , (5.66)

where a is the ring radius, ϕ′ is the unit vector in ϕ′-direction, and ρ′ is the radial unit
vector in the xy-plane, i.e.,

ρ̂′(ϕ′) = cosϕ′x̂ + sinϕ′ŷ . (5.67)

Now we can use the far-field radiation integral (4.54) with r′ · r̂ = aρ′ · r̂, and we get

E =
1

r
e−jkrG0(r̂) , G0(r̂) = I

J
− (I

J
· r̂)r̂ , (5.68)

I
J

= Ck

∫ 2π

0

ηI
0
ϕ̂′ejkaρ

′·r̂adϕ′

= CkηI0

∫ 2π

0

(cosϕ′ŷ− sinϕ′x̂)ejkaρ
′·r̂adϕ′ ,

(5.69)

10 See Subsection 5.1.8.
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Figure 5.16: ?Reflection coefficient of horizontal electric dipole above the ground as a function of
dipole length l for different heights h over the ground. The feed line has an impedance of 50 Ω.
Segment length in near-field evaluation is 0.005λ.

where we have expressed ϕ̂′ in terms of ϕ′ dependent functions and constant vectors, by
using ϕ̂′ = cosϕ′ŷ′ − sinϕ′x̂′. When ka� 1 we can expand the phase factor in the integrand
according to ejkaρ

′·r̂ ≈ 1 + jkaρ′ · r̂ and get

I
J

= CkηI0

∫ 2π

0

[(cosϕ′ + jkaρ̂′ · r̂ cosϕ′)ŷ− (sinϕ′ + jkaρ̂′ · r̂ sinϕ′)x̂]adϕ′ . (5.70)

The whole problem has rotational symmetry of type BOR0 , so we may limit the observation
point to the xz-plane, in which case r̂ = cos θẑ+ sin θx̂ and aρ̂′ · r̂ = a sin θ cosϕ′. Then,

I
J

= CkηI0
jka2 sin θ

[∫ 2π

0

cos2 ϕ′dϕ′ŷ−
∫ 2π

0

sinϕ′ cosϕ′dϕ′x̂

]
= CkηI0jkπa

2 sin θŷ .

(5.71)

For an arbitrary ϕ-plane and for symmetry reasons, we must get the same answer with ŷ
replaced by the unit vector ϕ̂ normal to the ϕ-plane. Therefore, we have

G0(r̂) = CkηI0jkπa
2 sin θϕ̂ . (5.72)

We see that the loop antenna has the same far-field function as a magnetic dipole with
magnetic moment M0 l if

M
0
l = jηI

0
kA , (5.73)

where A = πa2 is the area of the loop.

5.3 Helical antennas

A helical antenna consists of a spiral shaped wire with a certain number of turns. The
center line of a right-hand turned helical wire can be described by the coordinate vector (see
Fig. 5.18)

r′(ϕ′) = aρ̂(ϕ′) + (Sϕ′/2π)ẑ for 0 < ϕ′ < N2π , (5.74)
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Figure 5.17: Small electric loop antenna (left) and its equivalent magnetic current (right).
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Figure 5.18: Geometry of helical antenna for LHC (left) and RHC (middle) polarizations, and
electric current model of one single loop (right).

where a is the radius of the helix, S is the spacing between each turn, and N is the total
number of turns. The current distribution along the wire depends strongly on a, S and the
total wire length. Thus, it is not possible to find an approximate current distribution which
is acceptable enough for analytical work. Therefore, helical antennas are best designed by
using previously published empirical data based on a series of measurements, or by computer
simulations using codes for wire antennas based on the Method of Moments.

However, the following two current distributions on one single loop can be used to describe
the two basic modes of operation of the helical antenna, the normal mode and the axial mode.
They are

J(ϕ′) = I0ϕ̂
′ , when L1 � λ , (5.75)

J(ϕ′) = I
0
e−jϕ

′
ϕ̂′ , when L

1
≈ λ , (5.76)

respectively, where L1 is the length of one turn given by

L
1

=
√

(2πa)2 + S2 .

The former case corresponds to the case studied in the previous subsection, which gives the
same radiation field as a vertical magnetic dipole, except that here we also need to consider
the ground plane. This is left to the reader as an exercise. We will therefore find the far-field
function of the latter case. This case corresponds to a travelling wave around the loop, which
can be realized if the circumference L1 of a single ring is approximately equal to λ which
gives resonance.
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In the same way as in the previous subsection the radiation integral becomes

I
J

= CkηI0

∫ 2π

0

e−jϕ
′
ϕ̂′ejkaρ

′·r̂adϕ′ . (5.77)

By introducing ϕ′ = cosϕ′ŷ− sinϕ′x̂, and ρ′ · r̂ = sin θ cos(ϕ′ − ϕ), we obtain

I
J

= CkηI0

∫ 2π

0

[cosϕ′e−jϕ
′
ŷ− sinϕ′e−jϕ

′
x̂]ejka sin θ cos(ϕ′−ϕ)adϕ′ . (5.78)

If we substitute

cosϕ′ =
1

2
(ejϕ

′
+ e−jϕ

′
) and sinϕ′ =

1

2j
(ejϕ

′ − e−jϕ′) (5.79)

and use the Bessel function integral representations presented in Appendix E, we achieve

I
J

= CkηI0πa[J0(ka sin θ)(ŷ + jx̂)− e−j2ϕJ2(ka sin θ)(ŷ− jx̂)] , (5.80)

where J0 and J2 are the Bessel functions of zeroth and second order, respectively. As J2(0) = 0

and J0(0) = 1 is the maximum of J0 , the polarization in (5.80) is clearly recognized as RHC

along the positive z-axis and LHC along the negative. This LHC wave will by reflection
from a ground plane also become RHC. Thus, a loop on a ground plane with a propagating
wave on it gives a circularly polarized wave when the circumference is about one wavelength.
Therefore, the helical antenna will radiate circular polarization when L1 ≈ λ.

The helical antenna is most often located on a small metal disk which acts as a ground plane.
The cross-polarization and far-out sidelobes will be less and the symmetry of the main lobe
will be better if the ground plane is corrugated with circular grooves [4]. It is also possible
to improve the performance by tapering the diameter of the helix to zero at its radiating
end.

We have evaluated the co- and cross-polar component of (5.80)?. They are presented in
Fig. 5.19. The cross-polar sidelobes would be less if we were able to reduce the diameter of
the loop and still keep it resonant.
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Figure 5.20: Examples of different radiating slots in waveguides.

5.4 Slot antennas

Metal boxes are often used to shield electronic equipment in order to avoid radiation of signals
(emission), which may disturb other equipments, or reception (susceptibility) of interfering
signals from other equipments. Today there exist strong requirements on both emission and
susceptibility of electronic equipment in order to ensure electromagnetic compatibility (EMC ).
Antenna measurement chambers are also often shielded for the same reasons. It is well known
that narrow apertures in shields11 cause electromagnetic coupling between the inner and outer
sides. Therefore, all kind of slots or openings in shields must be avoided.

Slots are also commonly in use as desirable antennas, because they are cheap and accurate
to manufacture. In such cases they are almost always fed by waveguides. Indeed, the feed
waveguide has often several slots forming a linear array12. There may also be several slotted
feed waveguides side by side making up a complete two-dimensional array antenna. The slots
can be located differently depending on the application (Fig. 5.20). The radiation pattern
of a single slot will be derived in the next subsection. The excitation of the slot from the
waveguide is rather laborious to include in the analysis, but it can be done very accurately
due to the clean geometry. We will limit the analysis to three simple and illustrative cases:
a slot excited by a voltage source at its center, a slot excited by a plane incident wave, and a
slot excited by the open end of a rectangular waveguide with the same dimensions as the slot.
Finally, the excitation of more complicated slots is discussed without detailed analysis.

5.4.1 Field distribution and radiation pattern

We consider a slot of width w and length l in an infinite PEC ground plane. If the ground
plane has a finite wall thickness, the slot resembles a short rectangular waveguide. Then, we
know that the field inside the slot region can be expressed as a sum of rectangular waveguide
modes. If the slot is narrow with w � λ and with l ≈ λ/2, the basic TE10 mode dominates.
The higher order modes will be strongly evanescent and cannot propagate through the slot. It
is therefore reasonable to approximate the E-field distribution over the slot by the TE10 mode
of the rectangular waveguide. Thus, for an x-directed slot with the origin of the coordinate
system in the center of the slot, the slot field becomes

Eslt(x
′, y′) = E

0
cos
(π
l
x′
)

ŷ , (5.81)

11 Such as slots around a removable side of a box, or around the door of a chamber.
12 See Fig. 10.3, “Examples of resonant, travelling wave and leaky wave linear waveguide slot antenna

arrays.,” on page 333.
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Figure 5.21: E-field distribution in slot (left) in PEC and its equivalent magnetic current (center)
in PEC without slot. After imaging the PEC ground plane is removed (right).

for |x′| < l/2 and |y′| < w/2. This slot field distribution has shown to be a very good
approximation even when the wall is infinitely thin. It is also hardly affected by the type of
excitation and by the form and shape of the ground plane, provided w � λ and l ≤ λ/2. We
can find the radiation pattern of the slot in the ground plane by using equivalent magnetic
sources, as illustrated in Fig. 5.21. We consider the region z > 0, replace the E-field at the
boundary z = 0 by equivalent magnetic currents M = E0m = Eslt × ẑ = E0 cos(πx′/l)x̂, and
close the hole in the PEC13. This new equivalent field problem consists of E0m on a PEC

ground plane with no slot. Therefore, we can now remove the ground plane by imaging. As
a result, we can calculate the radiation field in the source region z > 0 as the field radiated
by a magnetic current E02m is radiating in free space. We must remember that the solution
for z < 0 is zero (null-field region)14. The radiated E-field is now obtained by using (4.50)
and (4.52) to be

E(r) =
1

r
e−jkrGslt(r̂) , Gslt(r̂) = 2E

0
wGimg(r̂)M̃(kx̂ · r̂) , (5.82)

where Gimg = Ck(x̂× r̂) , (5.83)

M̃(kx̂ · r̂) =

∫ l/2

−l/2
cos(πx′/l)ejkx

′x̂·r̂dx′ , (5.84)

with the incremental source constant Ck = −jk/4π as before. In order to obtain the above
form, we have assumed that w � λ so that the y′-integral from −w/2 to w/2 could be replaced
by a multiplication by w. We have also moved the constants E0 and w outside the radiation
integral.

The result is that the far-field function of the slot is a product of three factors:

1. the factor 2wE0 which is twice the voltage V0 = E0w over the center of the slot,

2. the far-field function Gimg of a unit incremental x-directed magnetic current source,
and

13 Note that here we have introduced a normalized magnetic current m representing the magnetic current
distribution when E0 = 1.

14 See “Imaging” in Section 4.6 on page 150.
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Figure 5.22: Radiation patterns of half-wave slot in ground plane. (a) E- and H-plane. (b) Co- and
cross-polar contour plots.

3. the Fourier transform M̃(kx̂ · r̂) of the magnetic current distribution M(x′) = cos(πx′/l).
The latter is recognized as a Fourier transform by substituting kx = kx̂ · r̂.

The above factorization corresponds to that of wire antennas and applies to all straight
slots in flat ground planes. When l = λ/2, the magnetic current distribution is exactly
the same as the electric current distribution of an electric half-wave dipole. The reason is
cos(πx′/l) = sin(k((l/2)− |x′|)) when l = λ/2. Therefore, by using r̂ · x̂ = sin θ cosϕ,

M̃(kr̂ · x̂) =
2

k
cos
(π

2
sin θ cosϕ

)
/[1− (sin θ cosϕ)2] . (5.85)

For this slot the xz-plane is the H-plane, and the yz-plane is the E-plane. The radiation
patterns are shown in Fig. 5.22. In E-plane ϕ = 90◦ and x̂× r̂ = −θ̂, so the pattern is uniform.
In H-plane ϕ = 0◦ and x̂× r̂ = − cos θϕ̂, so the pattern shape is given by −M̃(kr̂×x̂) cos θ. This
is slightly more directive than the incremental magnetic current. The patterns are similar
to those of the electric dipole except that the E- and H-planes are interchanged, the field
behind θ = π/2 is zero due to the ground plane (see Fig. 5.21), and that the first factor is
2E0w instead of ηI0 . The directivity of the half-wave slot is easily calculated in the same
way as for the half-wave dipole. The fields radiate only in the upper half-space, so the power
integral becomes

Pslt =
1

2
Pdp

(
2E

0
w

ηI
0

)2

, (5.86)
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Figure 5.23: Cross-section of slot in infinite PEC plane excited by a voltage source (left), the
equivalent problem for z < 0 (center) and for z > 0 (right).)

where Pdp is the power integral of the half-wave electric dipole. Therefore,

D0 =
4π|Gslt|2max

Pslt
=

2 · 4π|Gd|2max

Pdp
= 3.286 (i.e., 5.17 dB) , (5.87)

which is 3 dB more directive than a half-wave dipole in free space.

5.4.2 Slot admittance when excited by voltage source

We will now find the radiation resistance (or rather conductance) when the slot is located in
a thin metal sheet with free space on both sides, being excited by a lumped voltage source
V0 over its center. The impressed voltage creates a slot field which radiates equally into the
two half-spaces on both sides of the slot. The slot resembles two opposite sections of a slot
line shorted at x = ±l/2. A standing wave is set up on the line such that the electric field in
the slot becomes approximately

Eslt(x
′) = −V0

w
sin

[
k

(
l

2
− |x′|

)]
/ sin(kl/2)ŷ . (5.88)

This is equal to the field in Eq. (5.81) when l = λ/2, and does not give significantly different
results for other small lengths either.

The radiation field of this slot which radiates into both sides of the ground plane can be found
by treating each side in the way we treated one side in the previous subsection. This means
that the field in the region z > 0 is identical to that given before, and in the region z < 0 we get
a similar formula by going through the same derivation using Mz<0 = V0mz<0 = −Eslt(ẑ)× ẑ

instead of M = V0m = Eslt× ẑ, as the normal to the slot is directed along −ẑ on the rear side
(see Fig. 5.23). Now by comparison with (5.86) the power integral becomes

Pslt = Pdp

(
2V

0

ηI
0

)2

. (5.89)

From Prad = V 2
0
/(2Rslt) the radiation resistance is found to be

Rslt =
V 2

0

2Prad
=
ηV 2

0

Ptot
=

η2

4Rdp
= 487 Ω , (5.90)
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Figure 5.24: ?Conductance G and susceptance B of voltage excited slot. The values are presented
relative to 0.002 Siemens, i.e., 500 Ω, by reference to Eq. (5.90).

where Rdp = 73 Ω is the radiation resistance of the electric dipole. We can calculate the
complete self-admittance by using the duality relation in (4.56) between the impedance and
admittance of electric and magnetic current distributions. Using this, and accounting for the
fact that our present magnetic current is excited by a voltage 2V0 (and not V0), for the slot
admittance we obtain

Yslt =
4

η2
Zdp , (5.91)

where Zdp is the impedance of a strip dipole with the same electric current distribution as the
E-field distribution of the slot. At resonance, expression (5.91) yields Rslt = η2/(4Rdp) which is
the same as (5.90). We have evaluated (5.91), and the result is presented in Fig. 5.24?.

If we had evaluated the slot admittance for different slot widths (which must be smaller than
the length), we would have seen the following15: A resonant antenna which is excited at a
voltage maximum has an input conductance which is not sensitive to variations in the geom-
etry and the analysis model, whereas the susceptance is very sensitive to both such variations.
The input impedance shows a typical resonant behavior characterized by a resistance peak at
the resonance frequency where the reactance is zero.

The complex radiation admittance can also be calculated by using self-reaction, which corre-
sponds to a Method of Moments approach with one basis function and the same test function.
We are now dealing with a voltage (or rather equivalent magnetic current) source, so we get
the admittance instead of the impedance by normalizing the reaction integral to the slot
voltage16. The z > 0 and z < 0 problems give both the same admittance, and, these are in
parallel so that the total admittance seen at the terminal of the voltage source must be the
sum of them. i.e.,

Yslt =
1

V 2
0

〈V
0
Hm(x, y), V

0
m(x, y)〉+

1

V 2
o

〈V
0
Hmm(x, y), V

0
mm(x, y)〉 . (5.92)

15 This is related to the corresponding conclusion for current excited antennas, see page 182.
16 According to Section 4.5.4 on page 149.
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Here, Hm and Hmm are the H-fields in the slot calculated by using m for the z > 0 problem
and mm for the (z < 0) problem, respectively. The former gives

Hm =
1

η
Ck

∫ w/2

−w/2

∫ l/2

−l/2
[2mC

N1
− (2m · R̂)R̂C

N2
]
1

R
e−jkRdx′dy′ , (5.93)

where Ck, CN1
, CN2

, R and R̂ are defined in (4.34) and (4.41)-(4.42). The factor 2 in front
of m comes from imaging. The reaction integral must be evaluated numerically, and this is
complicated because the H-field is singular when x = x′ or y = y′. However, we can avoid these
problems by using the near-field algorithm in Section 4.7.2, for magnetic current sources. The
result will be the same as using (5.91) if the current distribution used to evaluate Zdp is the
same as the field distribution used to evaluate. Note that the two reaction integrals in (5.92)
are equal due to symmetry, so that we actually only need to evaluate one of them.

5.4.3 Slot excited by plane wave

We will now study the same slot as in the previous subsection, but when it is excited by
an incident plane wave. The main objective is to explain how to calculate the total power
transmitted through the slot. In this case we do not know the slot voltage, so we have to
determine it from the known amplitude Ei of the incident wave. The equivalent problem
for z < 0 has now two sources, Mm = Eslt × (−ẑ) and the plane wave Ei = Eie

−jkzŷ. The
equivalent problem for z > 0 has one source M = Eslt × ẑ. We can find the tangential E-field
in the slot by using the boundary condition that the x- and y-components of Hslt at z = 0

must be equal for both equivalent problems.

We consider first the equivalent problem of the z < 0 region. The incident wave is reflected
by the ground plane, so the total H-field at z = 0 due to the incident and reflected field
becomes

ηHi = −2Eix̂ . (5.94)

The total E-field is zero at z = 0. The H-field HMm due to the magnetic current Mm is given
by (5.93). The equivalent problem for z > 0 gives the H-field HM . By investigating (5.93)
we find that HMm = −HM at z = 0. Finally, applying the boundary condition, we get

[Hi + HMm ]tan = [H
M

]tan . (5.95)

This represents an integral equation with the voltage V0 of the slot as unknown. We can solve
this by using the Method of Moments with one basis function. We choose cos(πx′/l) both
as basis and weighting functions, i.e., Galerkin’s method . The cosine distribution is known
from (5.81) to represent a plausible approximation to the field. Then, (5.95) gives

V
0

=
1

2
〈Hi, cos(πx/l)x̂〉/〈Hm, cos(πx/l)x̂〉 , (5.96)

where Hm now is normalized and given by (5.93). Hi is the incident H-field at the PEC

calculated for the case that the slot is not present. The only part of (5.96) which depends
on the incident field is the numerator, which is

〈Hi, cos(πx/l)x̂〉 =

∫ w/2

−w/2

∫ l/2

−l/2
Hi · x̂ cos(πx/l)dxdy . (5.97)
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Figure 5.25: Open waveguide radiating from infinite ground plane (left), the equivalent problem of
the waveguide region (center), and of the radiating half-space region (right).

This has a maximum when Hi is parallel with the direction x̂ of the extension of the slot. It
also increases with increasing l. Therefore, the excitation voltage V0 of the slot is strongest
when the incident H-field Hi is parallel with the slot length.

The induced currents in the walls are given by J = 2(−ẑ×Hi). Therefore, we may alternatively
express (5.97) as follows: The more the electric current is disturbed by the slots, the stronger
is the excitation, V0 , of the slot. This conclusion is general and valid also for other shapes of
the metal wall and for any orientation of the slot.

After V0 has been determined, the amplitude of the scattered field for z > 0 can be calculated
and thereby also the total radiated power.

5.4.4 Reflection coefficient of open waveguide

The open narrow waveguide radiating from an infinite ground plane and its two equivalent
field problems are shown in Fig. 5.25. The difference from the previous problem is that Hi

and HMm are now waveguide field solutions. The procedure is otherwise the same. We will
not go into details here.

5.4.5 Slots in waveguide walls

The most commonly used slot antennas are made from slots in the walls of a waveguide.
When several slots are located after each other along the same waveguide, the slots in the
beginning of the waveguide must be weakly excited, and the slots at the end of the waveguide
must be strongly excited in order to ensure that the power leaving the slot array from the
beginning and end of it is similar in level.

We study the rectangular waveguide with a TE10 mode as an example. Different slot arrange-
ments are shown in Fig. 5.26. There are longitudinal slots, transverse broad wall slots and
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Figure 5.26: Current distribution in rectangular waveguide walls for TE10 mode (left), and different
weakly or strongly excited slots (right).

transverse tilted narrow wall slots. The electric current distribution in the walls of a waveg-
uide without slots can be found from microwave textbooks with waveguide field solutions. In
the broad wall at y = b/2 the current is

Jx = Hz = −j sin
(πx
a

)
e−jβ10z , (5.98)

Jz = Hx = −−β10a

π
cos
(πx
a

)
e−jβ10z , (5.99)

and in the transverse wall at x = −a/2

Jy = je−jβ10z . (5.100)

In these equations β10 = 2π/λg =
√
k2 − (π/a)2 with λg the guide wavelength. The wall

currents are illustrated in Fig. 5.26.

Longitudinal slots: We see that Jx is zero along the center line x = 0. Therefore, a
longitudinal slot along the center line x = 0 does not disturb the current and hence does
not radiate. However, if the longitudinal slot is displaced from the center, the excitation
will increase according to − sin(πx/a). Therefore we can tune the size of the excitation by
changing the offset from the center line. This is very convenient in slot array design in order
to change the excitation along the array. In addition, we can reverse the sign of the excitation
by moving the slot to the opposite side of the center line. This is also convenient because
it makes it possible to locate radiating slots with λg/2 spacing along the waveguide and still
get the same phase of the excitation. This is desirable in order to get a beam normal to the
surface of the waveguide without grating-lobes. In a circuit diagram longitudinal slots are
represented by a shunt admittance.

Transverse slots: A transverse slot will disturb the z-directed surface current distribution.
The broken current is strongest if the slot is located at the center of the broad wall. Such
slots are so strongly excited that they cannot be used in large arrays.
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Sometimes it is desirable to locate slots in the narrow wall. Entirely transverse and symmet-
rically located narrow wall slots does not radiate because there are no longitudinal currents
in the narrow walls. Therefore, in order to make such slots radiate we need to tilt the slots
slightly or introduce asymmetric elements inside the waveguide. Reference [3] is strong on
slot antennas.

5.5 Further reading

Dipole antennas are classic and described in details in the books by Kraus [1] and Jasik [2].
The textbook by Elliott is strong on slot antennas [3]. Wire antennas are today normally
designed by using wire modeling codes.

5.6 Complementary comments by S. Maci

Some textbooks such as [5] and previous papers make use of the term effective height to
describe the directivity of small antennas. The relation between them is explained here. We
have already in Section 2.9 introduced the relation between the far-field function G(r̂) and
the complex effective vector height ht(r̂) in the transmitting mode by

ht(r̂) =
4π

I0jkη
G(r̂) .

In receiving mode, the effective receiving height is defined by hr(r̂) ·E0 = Var (where Var is the
voltage of the Thevenin equivalent circuit (Fig. 2.22). Reciprocity leads to ht(r̂) = hr(r̂) =

h(r̂). By applying this definition to a dipole with an arbitrary oriented direction l̂, one has

h(r̂) = −
[̂
l− (̂l · r̂)r̂

] ∫ l/2

−l/2
j(l′)ejkl

′ l̂·r̂dl′ , (5.101)

where j(l′) is the normalized current along the dipole defined in Section 5.4. The above

can be rewritten as h(r̂) = −
[̂
l− (̂l · r̂)r̂

]
j̃(kl̂l · r̂) where j̃(kl) is the Fourier transform of

j(l′). By assuming a transmission line approximation for the current, j̃(kl̂l · r̂) assumes
the form in (5.81). When j(l′) is positive along the dipole (which happens for l < λ/2) it
follows from (5.101) that the effective vector height takes on a maximum amplitude value
hmax = |h(r̂)|max for l̂ · r̂ = 0, namely

hmax = j̃(0) =

∫ l/2

−l/2
j(l′)dl′ . (5.102)

Therefore, the maximum effective height is equal to the length of the dipole times the average
value of the normalized currents. From there it follows that a short dipole has hmax = l/2 and
for a resonant dipole hmax = λ/π. Also, there is a relationship between the effective height
hmax and the effective area Aem [5].

Aem =
η

4Rin
h2

max , (5.103)
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where Rin is the input resistance of the antenna and is the free-space characteristic impedance.
Eq. (5.103) is also generally valid, i.e., not only for dipoles. It expresses the effective area
as the square of the effective height weighted by the ratio between the input impedance and
the free space impedance. From the general relationship between gain G and effective area,
namely Aem = λ2

4π
G, one has

G =
πη

Rin

(
hmax

λ

)2

and therefore G =
πη

Rrad

(
hmax

λ

)2

, (5.104)

where D is the directivity and Rr the radiation resistance. The effective height can also be
obtained for a current loop (see (5.72)) as h(r̂) = jkSr̂× n̂ where S is the surface of the loop
and n̂ its normal oriented according to the right hand rule with reference to the direction
of the current in the loop. The maximum effective height of a loop is therefore hmax = kS.
Substituting the latter in (5.104) along with D = 3/2, one has, for a circular loop of radius a
the following radiation resistance

Rloop
rad =

ηπ

6

(
2πa

λ

)4

. (5.105)

It is interesting to compare this expression with the one in (5.22) relevant to the radiation
resistance of a short dipole of length l, which also can be found by using (5.4) with hmax = l/2.
The result is

Rloop
rad

Rdip
rad

=
(2πa/λ)

4

(l/λ)
2 . (5.106)

If the length of the dipole is equal to the perimeter of the loop (l = 2πa), this ratio becomes
equal to (l/λ)2 � 1. This means that the radiation resistance is much higher of the dipole
than of the loop. This also implies that it is much easier to match a short dipole to 50 Ω than
a loop of the same conductor length.

5.7 Exercises to Chapter 5

1. Crossed dipoles above ground: Consider the same two dipoles as in Exercise 4.3, but
assume now that both of them are located a distance h = λ/4 above a ground plane that
coincides with the xy-plane. Derive the radiation field and the expression for the co- and
cross-polar radiation patterns. What is now the level of the first cross-polar sidelobe relative
to the co-polar maximum?

2. Scattering from matched dipole: Consider a plane wave with E-field amplitude E0 incident
on a half-wave dipole which is terminated ideally by a conjugate matched load. Find the
expression for the received power and an expression for the induced current on the half-wave
dipole. Find also an expression for the far-field scattered by the induced current. What is the
ratio between the scattered and received power? Explain.

3. Directivities of two-element dipole array: Consider two short dipoles which are located
parallel with each other with a spacing s � λ. Write down the expression for the far-field
function when both dipoles are excited with the same amplitude and phase. What is the
directivity compared to a single short dipole in free space? Locate the same two dipoles co-
linearly (i.e, along the same line) with a spacing s, and with the same in-phase excitation. Use
the result of Section 5.1.11 to find an expression for the directivity. Compared with a simple
dipole, how much more is the directivity for a long spacing s (in dB)? Explain the difference
from Fig. 5.13.
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4. Infinitesimal loop over ground plane: Derive the far-field function of a horizontal in-
finitesimal loop antenna when it is located a height h over a metal ground plane. Sketch the
pattern when h = λ/4 and h = λ/2.

5. Infinitesimal loop in ground plane: Consider two coaxial cables which are connected to
two close and small holes in a metal ground plane. The shield of each cable has metal contact
with the ground plane, and the center conductor passes through the hole. The two center
conductors are connected on the upper side of the ground plane to form a half circular loop.
Derive the expression for the far-field function.

6. Resonant loop: Consider a resonant horizontal loop antenna which is RHC polarized in free
space. Derive the far-field function by assuming a� λ when evaluating the integral in (4.77).
Find the co-polar RHC and cross-polar LHC radiation patterns and sketch them.

7. Resonant loop over ground plane: Consider the resonant loop in the previous exercise.
Derive the far-field function, find the co- and cross-polar radiation patterns and sketch them
when the loop is located at heights h = λ/4 and h = λ/2 over a PEC ground plane.

8. Longitudinal slots: Consider two longitudinal slots spaced a distance λg/2 along a rectan-
gular waveguide where, λg is the guide wavelength. Assume that both slots are excited with
equal amplitude, and the phase of the excitation of the first slot is 0.

a) Derive an expression for the far-field function when both slots are located on the same side
of the center line of the waveguide. Where is the main lobe direction?

b) Derive the expression for the far-field function when the slots are located on opposite sides
of the center line of the waveguide. Where is now the main lobe direction?
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Chapter 6

Microstrip antennas and
spectral domain methods

Microstrip antennas are made of patterns like strips, patches and slots which are etched out
in metal films on dielectric plates (substrates). These plates are most often grounded by a
metal film on the opposite side. Microstrip antennas are popular because they are cheap
to manufacture and in particular to mass produce. They are alternatives to dipole and slot
antennas in many applications. The microstrip antenna is shorter than half a wavelength,
depending on the permittivity of the dielectric substrate. Microstrip antennas are often used
in linear or planar arrays.

During the two decades 1985-2005 a lot of research was directed towards developing the
spectral domain theories for analysis of microstrip antennas, and several commercial software
packages are now available.

Microstrip antennas can be excited in several ways as shown in Fig. 6.1. They can be probe-fed
by a coaxial probe coming up through the ground plane. This feeding is normally used when
the dielectric substrate is thin, giving only a few percent bandwidth. Another alternative
is to feed the patch directly from a microstrip line. Then, the feed network and the patch
radiators can be etched out on the same substrate, and there is no need for soldering and
making holes in the substrate. This reduces manufacturing cost, but the bandwidth is still
narrow. Microstrip antennas have significant ohmic losses due to the substrate. There will
also be undesired radiation from the feed lines which may destroy the polarization purity
and increase the sidelobe level. The aperture-coupled patch overcomes the disadvantages of
the probe- and line-fed patches. In this case there is a metal plane between the patches and
the feed lines which prevents the latter from radiating, and the patches are excited through
apertures in this plane. The bandwidth can be as large as 30 % if the upper substrate is thick
(close to λ/4) and made of low permittivity material. This will also reduce the ohmic losses
in the substrate. The upper substrate may even be removed and the patch instead suspended
by a thin dielectric film. A problem with the aperture- coupled patch is a significant back
radiation from the slot itself, so an additional rear shield may be needed. With a rear shield
the slot may couple to parallel plate modes between the two metal planes, which may cause
problems with undesired resonances in the feed line layer.
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εr

microstrip

line
aperture in ground

ground

ε1

ε2εr

(c) aperture-coupled patch(b) line-fed patch(a) probe-fed patch 

Figure 6.1: Examples of excitation methods for microstrip patch antennas. Probe-fed line-fed and
aperture-coupled.

The radiating patches can have all kinds of shapes. They can be rectangular or in circular
shape, and with slots in them, parasitic strips, truncated corners, tuning stubs etc. If the
patch and its excitation has two planes of symmetry, the antenna will radiate linear polariza-
tion, independent of from which side it is fed. We may use asymmetric patches or excitations
to create circular polarization from one single feed point. The patch can also be provided
with two different feed lines or probes in order to radiate dual polarization. Broadband
circular polarization can be obtained by locating four patches in a quadratic subarray and
excite them sequentially with 90◦ phase shifts. There may be two or more patches stacked
on top of each other in order to create dual- or multi-band performance. There exist an
enormous number of possible configurations with different characteristics and many of them
have already been investigated.

We will in this book describe two different analysis methods for microstrip antennas, the
transmission line model and the spectral domain method. The former is simple and valid for
rectangular patches on thin substrates. The latter is very accurate for all geometries provided
the ground plane and the substrate are large enough that the effects of their finite widths1 can
be neglected. We will only present numerical results by using the transmission line model, as
the spectral domain approach requires faster computational tools than Matlab. There exist
several commercial CAD programs for design of microstrip antennas based on the Method of
Moments and the spectral domain approach.

6.1 Transmission line model for rectangular patch

We will first present the simple transmission line model for a rectangular patch. In this model
the patch is considered as a short microstrip transmission line which is open at both ends,
except at the feed point where a narrower microstrip feed line or a coaxial probe is connected.
A microstrip transmission line is often described approximately by a planar-waveguide model
with perfectly conducting magnetic walls (Fig. 6.2). The width w of the microstrip line and
the relative permittivity εr of the substrate are then replaced by an effective width weff and
an effective relative permittivity εeff , so that the characteristic impedance Zk, propagation
constant β = 2π/λg and guide wavelength λg can be calculated by using the planar- waveguide

1 These are called the edge effects.
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conducting groundplane

dielectric substrate

strip conductorw

h

PEC hεr
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electric walls

perfect conducting
magnetic walls
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εeff

Figure 6.2: Planar-waveguide model for a microstrip line. (a) Cross section of microstrip line. (b)
Cross section of planar-waveguide model with magnetic side walls.

formulas

Zk =
η√
εeff
· h

weff
, β =

√
εeffk and λg =

λ√
εeff

, (6.1)

where η = 377 Ω is the free space wave impedance, and k = 2π/λ is the wavenumber in free
space. The formulas for the effective width and permittivity are based on some early and
initially quasi-static approximations [1] which are improved by empirical curve-fitting [3].
The formulas are today most easily found in Chapter 10 in [4]. For infinitely thin microstrip
lines they are:

weff =
2πh

ln

{
hF
w +

√
1 +

(
2h
w

)2} ,

with F = 6 + (2π − 6)e

(
− 4π2

3

)
( hw )

3/4

(6.2)

and εeff =
(εr + 1)

2
+

(εr − 1)

2
√

1 + (10h/w)
, (6.3)

where h is the substrate height, w is the patch width and εr is the relative permittivity of
the substrate. The latter effective permittivity formula is somewhat simplified compared to
that given in [4], but is still accurate for dimensions that give useful impedance values. The
characteristic impedance and the relative guide wavelength are plotted in Fig. 6.32.

The open ends of the transmission line cause strong reflections, so the area under the patch
resembles a cavity. This is resonant when the patch length l is about λg/2. Maximum
radiation appears when the patch is resonant. The patch length l is in reality slightly shorter
than λg/2 at resonance, due to the fringing fields at the edges of the patch. The larger the
height of the substrate is, the stronger these fields are. It is convenient to define an equivalent
length at resonance by leq = l+ 2∆l = λg/2. For leq = λg/2, the fields under the patch can be

2 There exist Matlab code for all figures of which the caption start with ?.
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Figure 6.3: ?Characteristics of microstrip line as a function of w/h. (a) Characteristic impedance.
(b) Relative guide wavelength λg/λ.

approximated by those of the resonant microstrip line, i.e., by the sum of one forward and
one backward propagating wave with unity reflection coefficient at the ends, i.e., at y′ = 0

and y′ = leq. This gives

E = E0e
−jβy′ ẑ + E0e

−jβleqejβ(y′−leq)ẑ ,

(η
0
/
√
εeff)H = E0e

−jβy′ x̂− E0e
−jβleqejβ(y′−leq)x̂ ,

where the first term on the right side represents the forward wave, and the second the
backward wave. We see that E · ẑ = ±2E0 at the open ends of y′ = 0 and y′ = leq since by
definition βleq = π. By combining the two terms we get for the fields under the patch

E = 2E
0

cos(βy′)ẑ ,

(η
0
/
√
εeff)H = −j2E

0
sin(βy′)x̂ ,

(6.4)

for 0 < y′ < leq and −weff/2 < x < weff/2. This cavity field is a valid approximation of the
actual field, in spite of the fact that it apparently predicts zero H-field at the open ends of
the line. In reality the H-field will have a finite value there in order to give non-zero radiated
power. Furthermore, to be more accurate, expression (6.4) also provides non-zero H-field in
the aperture if we evaluate the H-field at the physical edges of the patch, i.e., at y′ = ∆l and
y′ = leq −∆l.
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6.1.1 Radiation pattern by two-slot model

We may generate a convenient model for the radiation pattern by replacing the open walls of
the above cavity by equivalent currents and thereafter filling the cavity with metal. This gives
a magnetic current density around the patch aperture as shown in Fig. 6.4 with M = E× n̂,
where n̂ = ±ŷ at the walls at y′ = leq and y′ = 0, and at the walls at x′ = ±w/2.We may
multiply M with the height h of the aperture to get line currents Ml. Then,

M±
l = 2E

0
hx̂ , at y′ = 0 and y′ = leq , (6.5)

for −w/2 < x′ < w/2 and

M±
l = ±2E

0
h cos(βy′)ŷ , at x′ = ±w/2 , (6.6)

for 0 < y′ < leq. The latter magnetic currents in ŷ direction will not radiate much because
they change direction along the edge and have opposite directions at the two opposite edges3.
The former x-directed currents add constructively and represent a plausible model for the
radiation pattern of a patch on a thin substrate. When the substrate is very thin we may
even neglect the substrate and remove the ground plane by imaging, which gives the following
far-field function for z > 0

G(r̂) = Ck(x̂× r̂)I
M

[1 + ejkleqŷ·r̂] , (6.7)

with I
M

=

∫ weff/2

−weff/2

4E
0
hejkx

′(x̂·r̂)dx′ . (6.8)

Thus, a microstrip antenna on a thin substrate radiates in the same way as two in-phase
slots (equivalent magnetic currents) in an infinite ground plane. The field distribution is
uniform along the slot in contrast to the cosine distribution of the slots treated in Chapter 4.
However, all these slots are short, so the different field distributions do not cause significant
differences between the radiation patterns in H-plane. The E-plane radiation pattern is shown
in Fig. 6.5?. The equivalent length of a patch, which is leq = λg/2, is significantly smaller than
λ/2 for practical substrates for which εr > 2.1. The two slots modeling the microstrip antenna
are so close that their combined E-plane pattern shows a significant level of radiation along
the substrate, except when the substrate is missing (suspended patch) or has a permittivity
close to unity (foam). Then, the spacing between the two slots is approximately half the free
space wavelength, and we get a null in the direction along the substrate. Thus, in most cases
a microstrip element radiates strongly along the ground plane in E-plane in the same way as
a waveguide slot antenna does.

6.1.2 Impedance by transmission line model

We will now use the transmission line model to determine the impedance of the line-fed patch.
The equivalent circuit is shown in Fig. 6.6. The G and B represent the radiation conductance
and capacitive susceptance of each of the magnetic currents (i.e., slots), Yc = 1/Zc is the
characteristic admittance of the microstrip line formed by the patch (see (6.1)), and Zin is
the input impedance. The current sources Y12V1 and Y21V2 are due to the external mutual

3 This is due to destructive interference.
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Figure 6.4: Illustration of E-field under the patch as obtained by the transmission line model (upper
and lower left), equivalent magnetic currents around the patch (middle), and simplified radiation
field model (right).

coupling between the slots. The values of G and B can be calculated from the self-reaction
integral of a single radiating slot, and the mutual admittances from the mutual reaction
between them4. The G can also be calculated by integrating the radiation pattern of one
slot, and B can be found from the empirical formula for an equivalent length reduction ∆l

according to [5]:

B = β∆lYc ,

with ∆l = h · 0.412

(
εe + 0.300

εe − 0.258

)(
(w/h) + 0.262

(w/h) + 0.813

)
.

(6.9)

We will instead calculate the real part of the overall radiation conductance Gin = <(1/Zin)

directly at resonance by using the far-field function in (6.7) to evaluate the total radiated
power Prad and thereafter find Gin from

Prad =
1

2
GinV

2
1
. (6.10)

The result for the radiation resistance Rin = 1/Gin is shown in Fig. 6.7a?. The corresponding
resonant length calculated from

lr =
λg
2
− 2∆l , (6.11)

by using (6.9), is shown in Fig. 6.7b?. The radiation resistance obtained by integrating the
radiation pattern is very accurate. For most of the measured cases in [6] it gives a better value
than a rigorous Method of Moments solution of the patch [7]-[8]. The resonance frequency
is less accurate.

Let us now simplify and approximate the equivalent circuit in Fig. 6.6 by using

G =
1

2
Gin , B = β∆lYc and Y12 = 0 . (6.12)

4 See Section 4.5.4 on page 149.
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211 CHAPTER 6. MICROSTRIP ANTENNAS AND SPECTRAL DOMAIN METHODS

The first relation is valid at resonance5, if we consider G to include even the real part of
Y12V1 (or Y21V2). In reality the approximation Y12 = 0 corresponds to =(Y12) = 0. We can
now make a Matlab program of the equivalent circuit, if we also make use of the impedance
transformation formulas in Section 2.6.5. Fig. 6.8 shows the input impedance calculated in
this way for a few different dimensions?. The Matlab program can be used for parametric
studies of variations in permittivity, substrate thickness and patch width. The method is
only valid for thin substrates for which h � w. Still, it gives a good physical picture of the
radiation mechanism.

The results are approximately valid also for probe-fed patches, if the probe is attached to
the edge of the patch. We can also easily modify the equivalent circuit to account for a
probe which is attached somewhere else along the center line of the patch. This is left as an
exercise. See also Subsection 6.2.2. It is also possible to extend the equivalent circuit to the
cases when the patch is excited for circular or dual linear polarizations, which is left as an
exercise.

6.2 Self-reaction model for patch impedance

We have already introduced an equivalent circuit of the rectangular patch antenna. We
now show how the patch impedance can be found directly by a numerical procedure. This
procedure is readily extended to a complete Method of Moments solution for the currents on
the patch and excitation probe. We consider the line-fed patch in Fig. 6.9a. We choose to
model the line excitation as an ideal voltage source connected to the edge of the patch at the
same point where the microstrip line is connected. We further illustrate how to calculate the
impedance of the patch at this feed point. Having this, we can find the reflection coefficient on
the microstrip line by using the characteristic impedance of the line. Here we limit the analysis
to a single rectangular patch for which the current distribution is known quite accurately.
We treat the line-fed patch, but the model for a probe-fed patch is almost identical, which
will be explained at the end of the section.

The feed line can be included in the analysis by connecting the ideal excitation voltage to
the feed line at its input terminal instead of the edge of the patch. The calculation approach
will then be similar to what we explain below, where we solve the resulting integral equation
by the Method of Moments in order to find the current distribution on the patch. However,
if the feed line is included in the Method of Moments, we also need to include basis functions
for the expansion of the current on the line.

Let us assume that the width of the microstrip line is narrow compared to the patch width,
and that the line provides an excitation voltage at the center of the edge of the patch. We
assume that this voltage is provided by an E-field −E0 ẑ between the edge and the ground,
where V0 = E0h with h the height of the patch over the ground (Fig. 6.9b). Let us now
introduce an imaginary infinitely thin vertical cylindrical surface with circular cross section
between the ground plane and the excitation point on the patch. The tangential E-field at
this surface is E0 ẑ, so we may use the PEC equivalent to replace the imaginary surface by a
vertical PEC probe with a magnetic current tube M = −E0 ẑ×ρ̂ = −E0ϕ̂ around it (Fig. 6.9c).
We have now generated a new field problem with a probe, that is completely equivalent to

5 This is when the two slot voltages are equal, i.e., V1 = V2 .
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the original problem. Nevertheless, both are suffering from the initial approximation that the
E-field is E = −E0 ẑ between the feed point and the ground. The probe has been introduced
with the sole purpose of creating a convenient analysis model, and for this reason we refer to
it as the analysis probe. The impedance of the patch can be calculated through V0/Iz with
Iz the current on the vertical analysis probe (Fig. 6.9d).

6.2.1 Expansion of current distribution and Method of Moments

We will now approximate the current distribution on the patch and the equivalent probe by
basis functions. From the discussion in the previous subsection we may expect the current
distribution on the patch to be J(x′, y′) = Ip sin(πy′/l)ŷ. The vertical analysis probe is short
and connected to the patch, so we approximate the probe current by one rectangular basis
function, i.e., I(z)ẑ = Iz ẑ. These two current distribution choices do not satisfy current
continuity at y′ = 0 where the probe is connected. But, pulse basis functions always give
discontinuities in the current representation, so we accept this. All in all, the model is widely
accepted and has proven to give good results.

We can now formulate the boundary conditions. The total E-field (due to M, Iz and Ip)
is zero at the patch and at the surface of the probe, i.e., EM (r) + EIz(r) + EIp(r) = 0. Let
us separate the constants V0 , Iz and Ip from the E-fields and express the above equation as

V0Em(r) + IzEiz (r) + IpEip(r) = 0 , (6.13)

where Em(r) is the E-field due to the normalized magnetic current tube m = −(1/h)ϕ̂, Eiz is
the E-field due to a unit electric current on the probe, and Eip is due to a normalized electric
current distribution sin(πy′/l)ŷ on the patch.

Eq. (6.13) represents an integral equation which we need to solve for the two unknowns Ip
and Iz in terms of V0 . We have already expanded the currents in basis functions, so we choose
to test them by using sin(πy′/l)ŷ as weighting function over the patch and a constant ẑ as
weighting function over the probe (Galerkin’s method). Consequently, we arrive at

V0〈Em(r), sin(πy′/l)ŷ〉+ Iz〈Eiz (r), sin(πy′/l)ŷ〉+ Ip〈Eip(r), sin(πy′/l)ŷ〉 = 0 , (6.14)

where 〈E,J〉 denote reaction integrals over the current distributions on the patch, as defined
in Section 4.5.1, and

V
0
〈Em(r), ẑ〉+ Iz〈Eiz (r), ẑ〉+ Ip〈Eip(r), ẑ〉 = 0 , (6.15)

where the reactions integrals are taken along the probe. We highly prefer to avoid field
calculation due to sources along the z-direction, because in such cases the field matching at
the planar substrate boundaries become complicated. Therefore, we use reciprocity to do the
following replacements in (6.14)

〈Em(r), sin(πy′/l)ŷ〉 = 〈Hip(r),m〉 = 〈Hip(r),−1

η
ϕ̂〉 = 0 ,

〈Eiz (r), sin(πy′/l)ŷ〉 = 〈Eip(r), ẑ〉 ,
(6.16)

where Hip(r) is the field due to the electric source sin(πy′/l)ŷ evaluated at the surface of
the magnetic current tube. By letting the diameter of the probe tend to zero, the reaction
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between Hip(r) and ϕ̂ around the cylindrical surface of the analysis probe is zero. Using (6.16)
we obtain the following two equations for determining Ip and Iz as a function of V0 :

C
11
Ip + C

12
Iz = C

13

C
21
Ip + C

22
Iz = C

23

(6.17)

with
C

11
= 〈Eip(r), sin(πy′/l)ŷ〉 C

21
= 〈Eip(r), ẑ〉

C12 = 〈Eip(r), ẑ〉 C22 = 〈Eiz (r), ẑ〉
C13 = 0 C23 = −V0〈Em(r), ẑ〉 .

(6.18)

In order to calculate C23 we need to evaluate the E-field due to a magnetic current cylinder
at the axis of the cylinder and integrate this along the length of the cylinder. The magnetic
current cylinder was originally constructed to make the vertical electric field zero inside the
cylinder when it was located in a uniform electric field E0 ẑ. Therefore, the field inside the
magnetic cylinder when there is no external field must be V0Em(r) = −E0 ẑ , so

V0〈Em(r), ẑ〉 = −V0 . (6.19)

We can calculate Ip and Iz from (6.17) and arrive at finally the patch impedance formula
given in the next subsection.

6.2.2 Impedance of line-fed patches

The formula for the impedance of the line-fed patch which results from the derivations in
the previous subsection is

Zpch =
V

0

Iz
= − 〈Eip(r), ẑ〉2
〈Eip(r), sin(πy′/l)ŷ〉 + 〈Eiz (r), ẑ〉 . (6.20)

This can be evaluated numerically if the Green’s function of the grounded substrate is known,
see Section 6.3. The evaluations are rather laborious, in particular if the source extends in
z-direction as in 〈Eiz (r), ẑ〉, which represents the self-impedance of the analysis probe.

We may simplify (6.20) by introducing

Zdp = −〈Eip(r), sin(πy′/l)ŷ〉 , (6.21)

because the normalized self-reaction of the patch current is the “dipole over ground” impe-
dance we would see across a feed gap at the middle of the patch6. This can be seen comparing
the present derivations with those for the impedance of electric dipoles. If we also make use
of the fact that the E-field under the patch varies sinusoidally according to (6.4), we can
introduce the approximation

〈Eip(r), ẑ〉 = 2E
0
h/Ip = V

0
/Ip = Zc , (6.22)

where h is the height of the patch above the ground and Zc = 1/Yc is the characteristic
impedance in (6.1) of the microstrip line forming the patch. We can simplify (6.20) even
further by neglecting the self-reaction of the equivalent or actual feed probe (in the case of

6 See Section 5.1.7 on page 178 and Section 5.1.13 on page 187.
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a line-fed or probe-fed patch, respectively). Then, we finally get the much simpler equation

Zpch =
V0

Iz
=

Z2
c

Zdp
. (6.23)

Thus, the impedance of an edge-fed patch is proportional to the inverse of the impedance of a
center-fed flat dipole of the same width and on the same substrate if the current distributions
of the two cases are the same. In order to feed the patch like a dipole we must make a feed
gap or slot across the patch at its center, and feed it across the gap with a balun7.

6.2.3 Impedance of probe-fed patches

The equation for the probe-fed patch will be exactly the same, except that the voltage V0 is
applied between the center conductor and the shield in the coaxial opening in the ground
plane (Fig. 6.10). Therefore, the magnetic ring current will be distributed over the plane
coaxial opening instead of around the probe which was the case for the line-fed patch, and
we will need to numerically evaluate the distribution of Em(r) (due to the magnetic ring
current) along the probe and thereafter the reaction 〈Em(r), ẑ〉. This reaction is now different
from unity, which was for the line-fed patch case (see (6.19)). Taking this into account, and
solving (6.17), we arrive at the following general impedance formula for the probe-fed patch:

Zpch =

{
− 〈Eip(r), ẑ〉2
〈Eip(r), sin(πy′/l)ŷ〉 + 〈Eiz (r), ẑ〉

}
· 1

〈Em(r), ẑ〉 . (6.24)

If we move the probe to another location yprb along the patch, (6.22) will change according
to the variation of the patch current at the point where the probe is connected, i.e., according
to

〈Eip(r), ẑ〉 = Zc cos(βyprb) . (6.25)

If we do similar approximations for the probe-fed patch rendering (6.23) for the line-fed
patch, we achieve a simplified impedance formula

Zpch =
{Zc cos(βyprb)}2

Zdp
. (6.26)

Thus, the patch impedance can be tuned by varying the position of the probe. The impedance
is zero when the probe is located at the center of the patch for which yprb = leq/2 = λg/4. In
order to see a finite impedance Zdp at the center, we must provide a feed gap with help of a
balun between the coaxial opening and the two “dipole” arms8.

If we limit the analysis to a so-called suspended patch it is possible to provide results
from (6.23) and (6.26) without performing a complete spectral domain analysis. This means
that the patch is suspended on a thin film or similar (or by the feed probe) at a given height
h over the ground plane, in a way that there is an air gap between the patch and the ground
plane. Then, the relative permittivity of the “substrate” in the above models is unity, and
we can numerically evaluate the self-reaction of the sinusoidal patch current by using the
near-field algorithm in Section 4.7.2, together with imaging.

7 For more information see Section 5.1 on page 167.
8 See the discussion after (6.23).
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6.3 Spectral domain methods

The reaction formulas for the patch impedance in the previous section are valid for patches
on dielectric substrates. However, we then need to evaluate the field in the presence of the
dielectric material. Any multi-layer substrate can be included in the analysis by using the
spectral domain method. In this method the effect of the finite lateral extents of the substrate
and the ground plane are neglected. The spectral domain method is commonly referred to
as a “full-wave” method because all waves (i.e., the whole spectrum of waves) are included
without approximations.

Here we briefly explain the spectral domain method by using the current sheet model as
described in [11]. This model is not so common but it has the advantages of a simple mathe-
matical formulation and physically interpretable spectral domain solutions (Fig. 6.11).

The spectral domain method is strongly related to the theory of plane apertures in the sense
that the three-dimensional (3D) source distributions (such as e.g., the electric currents on
the patch) are Fourier transformed in two dimensions. After the Fourier transformation
we interpret the spectral domain sources in the spatial domain as current sheets. Then we
solve the multi-layer problem as a harmonic one-dimensional (1D) field problem, i.e., a field
problem with known harmonic variations along the uniform directions of the structure and
with boundary conditions applied only in the direction normal to the structure layers. Thus,
the spectral domain method can also be referred to as an approach by which the multi-layer
field problem is solved by using a spectrum of 1D solutions, i.e., by a spectrum of plane
waves.

We illustrate the spectral domain method by using a rectangular patch which is fed by a
discrete voltage source V0 at the edge and is located on a grounded single-layer substrate
with low permittivity (εr ≈ 1). Nevertheless, the method is readily extendable to multiple
layers of actual substrates, aperture coupling, and other patch shapes.
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6.3.1 3D field problem

We use the physical equivalent to replace the rectangular metal patch by an induced electric
current J(x′, y′) (Fig. 6.11a). Then, we may express the field radiated by J(x′, y′) as

E
S
(x, y, z) =

x

S

J(x′, y′) ·G(x− x′, y − y′, z)dx′dy′ , (6.27)

where G(x, y, z) is the Green’s function of the layered grounded substrate, i.e., the E-field
due to an incremental current source located at x′ = 0, y′ = 0 at the surface z = 0 of the
substrate. The following boundary condition must be satisfied at the surface S of the patch:

[E
S
(r) + Ei(r)]tan = 0 , (6.28)

where Ei(r) is the incident E-field due to the excitation, i.e., in our case the discrete voltage
source V0 . If G(x, y, z) is known, expressions in (6.28) with (6.27) define an integral equation
for determination of the current distribution J(x′, y′). This is commonly solved by the Method
of Moments. We will now illustrate how to determine G(x, y, z) by Fourier transformation
techniques.

6.3.2 Harmonic 1D field problem

We introduce the two-dimensional Fourier transform of the current distribution, as,

J̃(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

J(x′, y′)ejkxx
′
ejkyy

′
dx′dy′ . (6.29)

The inverse transform

J(x′, y′) =

(
1

2π

)2 ∫ ∞
−∞

∫ ∞
−∞

J̃(kx, ky)e−jkxx
′
e−jkyy

′
dkxdky (6.30)

can be interpreted as a superposition of a spectrum of differential sources of the form

∆J̃(kx, ky) =

(
1

2π

)2

J̃(kx, ky)e−jkxx
′
e−jkyy

′
∆kx∆ky . (6.31)

For each value of kx and ky, these sources can be interpreted as current sheets located at
z = 0, with an infinite extent in the xy-plane and with a given uniform harmonic variation
in the x- and y-directions.

In this way the 3D field problem has been reduced to a superposition of harmonic 1D field
problems, where each harmonic 1D field problem consists of a harmonic current sheet on top
of a planar grounded substrate (Fig. 6.11b). The solutions to the harmonic 1D field problems
can be constructed in terms of plane waves. The fields in all layers of the structure must have
the same harmonic x- and y-variations as the current sheet in order to satisfy the boundary
conditions at each material interface. We may express the solution of the harmonic 1D field
problem as

Ẽ
S
(kx, ky, z)e

−jkxxe−jkyy = J̃(kx, ky) · G̃(kx, ky, z)e
−jkxxe−jkyy , (6.32)
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where G̃(kx, ky, z) is the Green’s functions of the harmonic 1D field problem. From the con-
volution theorem, in the theory of Fourier transforms, this is related to the Green’s function
in (6.27) by

G(x, y, z) =

(
1

2π

)2 ∫ ∞
−∞

∫ ∞
−∞

G̃(kx, ky, z)e
−jkxxe−jkyydkxdky . (6.33)

The 3D E-field is normally determined by the Method of Moments as follows. J(x, y) is
expanded in basis functions Bn(x, y) according to

J(x, y) =
∑

bnBn(x, y) , (6.34)

where bn are the unknown coefficients to be determined. Each basis function is Fourier trans-
formed to a current sheet, and the corresponding harmonic 1D E-field is found from (6.32)
by using the known expressions for the Green’s function. This E-field is tested over the
patch by using the same testing functions as basis functions (i.e., Galerkin’s method), and
the result for each basis function is inverse transformed to the space domain. Thereafter, the
unknown coefficients of the basis function expansions are solved by applying the boundary
condition in (6.28). When J(x, y) is found, Ẽ(x, y, z) can be expressed in terms of J̃(kx, ky)

by using (6.32). Afterwards, we obtain the 3D field solution by the inverse Fourier transform

E(x, y, z) =

(
1

2π

)2 ∫ ∞
−∞

∫ ∞
−∞

Ẽ(kx, ky, z)e
−jkxxe−jkyydkxdky . (6.35)

The integrands of both (6.33) and (6.35) have simple analytic forms only for single layer
substrates (see next subsection). Even for this simplest single layer case, the inverse trans-
form is complicated to numerically evaluate, because the integration boundaries extend to
infinity.

6.3.3 Green’s function of harmonic 1D field problem

The E-field due to an electric current sheet located at z = 0 in free space (so that k = 2π/λ

with λ the wavelength in free space) is given by

Ẽ
0
e−jkxxe−jkyy =

{
− k

2kz
[ηJ̃− (ηJ̃ · k̂p)k̂p]e−jk(k̂

p·r) for z > 0

− k
2kz

[ηJ̃− (ηJ̃ · k̂m)k̂
m

]e−jk(k̂
m·r) for z < 0

, (6.36)

with Ẽ
0

= Ẽ
0
(kx, ky, z, J̃) , J̃ = J̃(kx, ky) , r = xx̂ + yŷ + zẑ ,

k̂
p

= (kxx̂ + kyŷ + kz ẑ)/k and k̂
m

= (kxx̂ + kyŷ− kz ẑ)/k ,

kz =
√
k2 − k2

x − k2
y when k2

x + k2
y < k2

and kz = −j
√
k2
x + k2

y − k2 when k2
x + k2

y > k2 .

Eq. (6.36) represents the Green’s function of the harmonic 1D field problem if we let J̃(kx, ky)

be a unit current sheet. The current sheet corresponds to a point source in the 1D field
problem for determining the z-variation. The z-component of the E-field in (6.36) has a
discontinuity across the current sheet. The corresponding H-field has a discontinuity equal
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Figure 6.11: Illustration of spectral domain analysis of microstrip patch antenna.
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to J̃ in its tangential component, in order to satisfy the boundary condition at the current
sheet, see (4.14) in Section 4.1.2.

The E-field in (6.36) is expressed in a form which is easily interpretable. We see that the
solution represents two plane waves propagating away from the current sheet: one in the
direction k̂

p
in the region z > 0 above the sheet9, and the other in the direction k̂

m
in the

region z < 0 below the sheet10. See Fig. 6.11c.

When the current sheet is located above a ground plane which is at z = −h, the E-field
becomes (Fig. 6.11d)

Ẽ(kx, ky, z)e
−jkxxe−jkyy

=
(
Ẽ

0
(kx, ky, z, J̃)e−jkxxe−jkyy + Ẽ

0
(kx, ky, z + 2h, J̃img)e−jkxxe−jkyy

)
,

(6.37)

where the first term is obtained from (6.36) for z > −h (i.e., above the ground plane), and the
second is due to the image current sheet. It is obtained from (6.36) by using the argument
z + 2h instead of z and replacing J̃ by the image current J̃img = −J. The spectral domain
solution for an actual multi-layer substrate can also be expressed in terms of plane waves, but
the expressions are too complex to be included here. A method for calculating the spectral
domain solution is described in [11].

6.3.4 Numerical implementation

The numerical implementation of the formulas in Subsections 6.3.1 to 6.3.3 is complicated.
The reason for the problems is that the boundaries of the inverse integrals in (6.33) and (6.35)
extend to infinity. When k2

x + k2
y > k2, there will be singularities in the field solutions, and

these can be interpreted as surface waves inside the substrate and needs special numerical
treatment.

Several commercial and semi-commercial computer programs exist for analysis of microstrip
antennas by the spectral domain approach.

6.4 Further reading

The number of papers on microstrip antenna theory and design is so large that it is impossible
to give a list here. A few important books and articles are listed below in references [4]
and [12]-[28]. The dual-slot model for the radiation impedance can be found in [9].

6.5 Complementary comments by S. Maci

In a conventional Galerkin’s method , the entries of the impedance matrix of co-planar basis
functions (i.e., basis function on the same substrate layer) are calculated through the convo-
lution between basis functions Bn(r) = Fn(r) and the Green’s functions G of the problem11,

9 This is indicated with superscript p = plus.
10 This is indicated with superscript m = minus.
11 MoM is treated in Section 4.7 and we use the same notation here.
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followed by an integral testing with the test function Wm(r) = Fm(r)

Znm =
x

Fm(r) ·
[x

G(r− r′) · Fn(r′)dS′
]
dS , n, m = 0, 1, 2, ... , (6.38)

where r(x, y) denotes the space domain variable. The impedance representation (6.38) is
valid only if the Green’s function presents a shift-invariant form, namely when no boundary
conditions are imposed in the xy-plane. This representation consists of 4 interlaced inte-
grals. In multilayer dielectric problems with interfaces in the xy-plane, the Green’s function
is known in closed form only in the spectral domain. Thus, calculating directly (6.38) re-
quires the numerical evaluation of the space Green’s function G(r) through inverse Fourier

transformation of the spectral domain Green’s function G̃(k), namely

G(r) =
1

(2π)2

x
G̃(k)e−jk·rdkxdky , (6.39)

where k(kx, ky) represents the spectral variable associate with r(x, y). Eq. (6.39) can be
expressed as a spectral domain Sommerfeld integral [29], [31] of the following kind

G(r) ≡ G0(ρ) =

∫ ∞
0

G0(kρ)J0(kρρ)kρdkρ , (6.40)

where ρ is the radial distance from the point source. These type of integrals are also encoun-
tered in many other EM problems.

Whenever the basis and test functions are very small in terms of wavelengths, using e.g., the
Rao Wilton Glisson (RWG) basis functions [31], there is needed only a few points within the
basis function domains to evaluate the integral (6.38). However, since the dyadic Green’s
function of the fields is hyper-singular at the source point, the Mixed Potential Integral
Equation (MPIE) approach have to be used for treating the self-reaction [32]12.

The spectral Domain approach described in this book, can also be seen as an alternative way
to formulate the matrix entries in conventional Galerkin MoM. In fact, the Eq. (6.38) can
also be seen as an inverse Fourier transform of the product of the Fourier transforms of F
and G in (6.38) [33]-[36], i.e.,

Znm =
x

F̃m(k) · G̃(k) · F̃n(−k)e−jk·∆rdkxdky , (6.41)

where F̃m(k) denote Fourier Transforms of F̃m(r) and ∆r = (∆x,∆y) is the distance between
the origins of the reference systems in which the Fourier transforms of the basis and test
functions are calculated. The importance of (6.39) in formulating MoM for patch antennas is
due to the fact that the spectral Green’s function is known in analytic form for single-layer
substrates.

Despite the fact that (6.39) requires only 2 integrals, the space formulation in (6.38) is today
more used that (6.39) in commercial software for planar antennas. The reason is essentially
that it can treat structures of more arbitrary planar geometry, which renders the space domain
approach more flexible. However, spectral domain is still used for simple shapes since it is
very fast and easy to formulate. In the following, the advantages and disadvantages of the
two approaches when applied to patch antenna problems are discussed.

The advantages of spectral domain SD are:

12 See Section 4.8.
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• There is no need to pre-calculate the Green’s function, whose spectrum G̃(k) is available
in closed form.

• It is simple to implement due to the direct use of EFIE (Electric Field Integral Equation)
without need of MPIE.

• It is possible to use entire domain basis functions for simple shapes with reduction of
number of unknown.

• It is possible to obtain simple expressions for the mutual coupling between patches by
using single basis functions shaped as a modal solution for the patch current.

The limitation or difficulties of SD are:

• It is not applicable when the Green’s function is not shift-invariant, like for instance
when treating vertical (z-directed) metallization.

• The basis functions should have closed form Fourier-spectra, otherwise there will be
large computational effort for the numerical evaluation of the Fourier transforms.

• Small-domain basis functions like RWG are useful for complex geometries, but they
contain a large spectral bandwidth so the integration of (6.39) converges very slowly.

• The representation in (6.39) oscillates fast and hence converges slowly when the sepa-
ration between basis and test functions are large.

The advantages of the space domain are:

• It is convenient to use the small domain basis functions because the reaction integral
converges fast.

• It is possible to re-use space-domain numerical codes developed for free-space problems.

The difficulties of the space domain approaches are:

• There is a need for preprocessing for calculation of the spatial domain Green’s functions.
• There is a need for extracting space singularities, but these methods are available from

using MPIE for conventional space domain MoM.

We note that the main difficulty of the space-domain approach is concerning with the pre-
calculation of the mixed potentials Green’s function.

• Numerical integration: Traditionally, integration along the real axis combined with
pole extraction techniques and averaging methods has been employed, leading to very
efficient algorithms [37]. Other methods consists of the extraction of the asymptotic
value for kρ:

G0(ρ) =

∫ ∞
0

[G0(kρ)−G∞(kρ)] J0(kρρ)kρdkρ +

∫ ∞
0

G∞(kρ)J0(kρρ)kρdkρ . (6.42)

The regularizing function G∞(kρ) can be chosen as the limit of G(kρ) for small ω, en-
suring that the last integral can evaluated in closed form. The latter represents the
quasi-static value of the Green’s function. The regularized first integral in (6.42) con-
verges rapidly, and its convergence can be improved by deforming the real-kρ integration
into a complex-variable contour [38].

Other related methods are listed below:

• Complex exponential expansion: The Green’s function is expanded in terms of complex
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exponentials by the Generalized Pencil of Function (GPOF) method [39]-[41]

G(ρ) ≈
∫ ∞

0

 N∑
i=1

bi
e−jαi

√
k2−k2

ρ√
k2 − k2

ρ

 J
0
(kρρ)kρdkρ ,

where αi are complex coefficient with =αi < 0. The closed form can be obtained from
integrating it term by term by using the Sommerfeld identity,

e−jk
√
α2+ρ2√

α2 + ρ2
=

1

2πj

∫ ∞
0

e−jα
√
k2−k2

ρ
J

0
(kρρ)√
k2 − k2

ρ

kρdkρ .

This leads to a rapidly converging summation of spherical waves originating from a
complex point (phase center). More details on these complex point-source are given in
Section 7.8.

• Complex-pole expansions: The spectral Green’s function is expanded in complex-pole
terms through an algorithm called Vect-Fit [42] and [44];

G(ρ) ≈
∫ ∞

0

[
N∑
i=1

Rn
k2
ρ − β2

n

]
J

0
(kρρ)kρdkρ .

The closed form can be obtained by integrating it term by term using the identity

H(2)
0

(βρ) =
2j

π

∫ ∞
0

1

k2
ρ − β2

J0(kρρ)kρdkρ .

The final result is given in terms of cylindrical waves propagating with complex wavenum-
bers βn. This method is often applied in combination with GPOF, thus leading to a
combination of complex point sources waves and cylindrical waves.

• Uniform asymptotic evaluation: This method makes use of a deformation of the inte-
gration contour into a contour called “Steepest Descent Path” [45]-[46]. This method is
valid when the observer is one wavelengths from the source point. It has the advantage
to extract physical contributions in the form

G(ρ) ≈ Gsp(ρ) +Gsw(ρ) ,

where Gsp(ρ) is the space wave contribution, and Gsw(ρ) is the surface wave contribution.
When inserted into the reaction integral in (6.38) and extended to an entire patch area,
the asymptotic formula provides the surface wave contribution of the coupling, which
is the dominant one for large separation and small losses.

The SD method is also often used to study periodic multilayer printed structures excited by
a phased field of type ejr·k0 . Applications are found in the analysis of planar patch arrays,
Frequency Selective Surfaces (FSS), and printed metasurfaces. For periodic structures the
Floquet theorem [47] ensures that the field can be expanded in terms of plane waves ejr·kpq ,
with

kpq = k0 +
2π

dx
px̂ +

2π

dy
qŷ .



225 CHAPTER 6. MICROSTRIP ANTENNAS AND SPECTRAL DOMAIN METHODS

The numerical dimension of the problem is reduced to a single periodic cell. In fact, the
unknown current J0(r) in the cell centered at r = r0 and the current Jl(r) centered at r = rl
satisfies the phase-shift condition

Jl(r) = J0(r)e−j(rl−r0
)·k

0 .

The SD MoM can be adapted to this periodic case by using the Poisson Summation For-
mula [48]; thus, reducing the MoM matrix entries to a sampling of the integral in (6.39) at
the spectral points kpq; i.e,

Znm =
∑
pq

F̃m(kpq) · G̃(kpq) · F̃n(−kpq) . (6.43)

The above expression represents the reaction integral between the test currents and the
field radiated by the infinite periodic distribution of basis function currents centered at
points

rstnm = sdxx̂ + tdyŷ + rnm , s, t = 0,±1,±2, ... ,

and phased by ejrst·k0 . Several techniques have been presented in the literature to speed up
this series, see [49]-[52].

There are two practical cases that should be distinguished in such type of formalism. The
first one is relevant to plane wave incidence (often used for FSS or receiving arrays). In this
case k0 is imposed by the excitation, and the objective is to find the surface currents on the
metallic elements, the scattered field or the voltages at the array input ports. The second case
is relevant to the determination of the modes supported by the structures. In the latter, the
excitation is not imposed and k

0
is the unknown of the problem. The dispersion equations of

the surface or leaky modes k0 = k0(ω) can for such cases be found by setting the determinant
of the MoM matrix equal to zero. This makes it also possible to find the bandgaps of the
periodic structure, namely frequency bands where surface wave propagation is forbidden [48].
The microstrip antennas are well suited for being realized on curved geometries, see [53]-
[55].

6.6 Exercises

1. Transmission line model: Find the total radiated power of an incremental magnetic current
on a ground plane, and use this to derive an expression for the conductance G of the edge slot
when the width w of the slot is very small. Compare them with the values in Fig. 6.7.

2. Radiation pattern: An expression for the far-field function of rectangular microstrip patch
antennas is given in Section 6.1.1. It is derived under the assumption of a very thin substrate.
Write out this expression as an analytic formula in terms of θ and ϕ in a coordinate system
with z-axis normal to the patch. Sketch the radiation patterns in the E- and H-planes when
the relative permittivity of the substrate is 2.54. What is the level in dB of the radiation along
the ground plane relative to the level at broadside?

3. Probe-excitation in transmission line model (with Matlab): The equivalent circuit in
Fig. 6.6 can also be used for probe-excited patches, if the probe is connected to the edge of the
patch. Modify this equivalent circuit to account for a probe which is attached to the interior
of the patch. This is often done in order to tune the impedance. Implement this change in the
Matlab code for Fig. 6.8 and study how the input impedance varies with distance between
the edge and the probe. Does the variation agree with (6.26)?
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4. Circular polarization with transmission line model (with Matlab): We can excite
a single rectangular patch for radiation of circular polarization in the following way. The
patch must be nearly quadratic, so that the resonance frequencies of the two orthogonal
transmission lines formed by the patch will be nearly equal. We attach the probe to the patch
unsymmetrically, e.g., along the diagonal of the patch, in a way that both the two orthogonal
resonances are excited. Then, the patch will radiate circular polarization if the two orthogonal
lengths of the patch are adjusted in a way that the impedances of the two orthogonal modes,
seen at the probe, are in quadrature. Try to find the equivalent circuit for such a patch.
Develop a Matlab program based on this equivalent circuit, and try to tune the two lengths
in a way that the radiated polarization will be circular.

5. See the exercises about arrays of microstrip antennas in Chapter 10.
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Normale Supérieure 12: 47–88, 1883.

[48] S. Maci, A. Cucini, “FSS-based EBG surfaces”, book Chapter in Electromagnetic metamaterial: physics
and engineering explorations, Edited by R. Ziolkowski and N. Engheta, Wiley Interscience, USA, pp. 57-
77, 2006.

[49] F. Capolino, D.R. Wilton, and W.A. Johnson, “Efficient computation of the 2- D Green’s function for
1-D periodic structures using the Ewald method”, IEEE Transactions of Antennas and Propagation,
Vol. 53, No. 9, pp. 2977–2984, September 2005.

[50] M.G. Silveirinha and C.A. Fernandes, “A new acceleration technique with exponential convergence rate
to evaluate periodic Green functions”, IEEE Transactions of Antennas and Propagation, Vol. 53, No. 1,
pp. 347–355, January 2005.

[51] I. Stevanovic, J.R. Mosig, “Periodic Green’s function for skewed 3-D lattices using the Ewald transfor-
mation”, Microwave and Optical Technology Letters, Vol. 49, pp. 1353– 1357, June 2007.

[52] G. Valerio, P. Baccarelli, P. Burghignoli, and A. Galli, “Comparative analysis of acceleration tech-
niques for 2-D and 3-D Green’s functions in periodic structures along one and two directions”, IEEE
Transactions of Antennas and Propagation, Vol. 55, No. 6, pp. 1630–1643, June 2007.

[53] N. Herscovici, Z. Sipus, P.-S. Kildal, “The cylindrical omnidirectional patch antenna”, IEEE Transac-
tions of Antennas and Propagation, Vol. 49, No. 12, pp. 1746-1753, December 2001.

[54] S. Raffaelli, Z. Sipus, P.-S. Kildal, “Analysis and measurements of conformal patch array antennas
on multilayer circular cylinder”, IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3,
pp. 1105-1113, March 2005.

[55] Z. Sipus, N. Burum, S. Skokic, and P.-S. Kildal, “Analysis of spherical arrays of microstrip antennas

using moment method in spectral domain”, IET Microwaves, Antennas and Propagation, Vol. 153,

No. 6, pp. 533-543, December 2006.



229 CHAPTER 7. RADIATION FROM APERTURES

Chapter 7

Radiation from apertures

We have already analyzed radiation from small apertures (slots) in Chapter 4. In this chapter
we treat apertures more systematically and generalize the theory to all kinds of apertures,
as appearing in different antennas. The actual aperture antenna is radiating from openings
in metal surfaces. Examples are open-ended rectangular and circular waveguides, slots in
waveguide walls, and horn antennas, as shown in Fig. 7.1. The reflector and lens antennas
in Fig. 7.2 are normally also called aperture antennas, although they do not radiate through
physical openings or apertures. Instead, the structures look more like complementary aper-
tures. However, the field problem to be solved is the same as that of actual aperture antennas,
in the following sense: on a surface enclosing the antenna the fields are to a good approxima-
tion confined within a limited region defined by the rim of the mechanical structure. These
fields are referred to as the aperture field. The surface containing the aperture field can be
plane or curved. Sometimes it is advantageous to let it coincide with the desired or expected
wavefront of the aperture field.

Antenna arrays are also often said to have apertures (Fig. 7.3). In an array of open waveguides
the aperture is defined by the whole radiating surface of the antenna. For an array of more
concentrated elements, such as dipoles, the array aperture is defined in a similar way by
considering its rim to be located one half element spacing outside the center of the edge
elements.

We will first explain how to calculate radiation from apertures in PECs (Section 7.1) and
thereafter we will show how to use the Huygens equivalent to analyze both actual and com-
plementary apertures (Section 7.2). The theory is thereafter confined to plane apertures
(Section 7.3) and applied to apertures of rectangular (Section 7.4) and circular (Section 7.5)
shape. Also, some microstrip antennas can be treated approximately as aperture anten-
nas1.

Finally, we will consider a Gaussian aperture distribution (see Section 7.6). This represents a
very important analytical form of the aperture distribution, because both the near- and far-
field radiation integrals have analytical solutions, and the resulting near-fields and far-fields
take Gaussian shapes as well. Indeed, the Gaussian beam can be transformed analytically
by the same analytic expression from the aperture to any field point in the near or far-field

1 For more information see Section 6.1.1 on page 208.



230

(a) Open waveguides

(c) Horn antennas

(b) Slots in waveguide wall

longitudinal

waveguides slots

narrow wall slot

Figure 7.1: Examples of antennas with actual apertures.

(a) Primary-fed reflector (b) Dual-reflector antenna (c) Lens antenna

Figure 7.2: Examples of antenna arrays with apertures.

(a) Array of open waveguides (b) Any planar array 

(excited by linear or constant phase)

dx

dy

dy/2

dx/2

Figure 7.3: Examples of antennas with complementary apertures.
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(a) Rectangular plane aperture

in infinite ground plane
(b) Aperture in PEC structure (e.g. horn)

(the aperture can have different forms)

(c) Conformal apertures (e.g. cylinder)

circular

spherical

aperture

circular

plane

aperture

circumferential

cylindrical aperture

circular cylindrical

aperture

Figure 7.4: Illustration of different actual apertures in PECs and convenient choices of aperture
surfaces.

region. This property makes the Gaussian beam very useful for studying general diffraction
phenomena in the near-field and far-field regions.

7.1 Apertures in PECs

The actual aperture antennas radiate from holes or openings in metal surfaces. The term
aperture is used both to denote the hole itself and the virtual surface over which we describe
the aperture fields. For convenience this virtual surface is chosen in a way that simplifies the
analysis. This often means that it is chosen to take the form that the metal surface would
have without the hole, in such a way that the aperture surface becomes conformal with this
metal surface. Some actual apertures are shown in Fig. 7.4. The first is a rectangular plane
aperture in a large ground plane. The second is a rotationally symmetric horn antenna. In
this case we may select either a plane aperture surface, or a spherical one with its centre of
curvature in the apex of the horn. Both these apertures have the same circular rim. The
spherical aperture follows the expected phase-front of the aperture field, which is preferable.
The plane aperture is advantageous in analytical work, since some radiation integrals for the
plane case can be solved analytically, or they can be simplified to a universal form which can
be easily scaled with antenna size. The two apertures in Fig. 7.4c are openings in a circular
cylinder; In this case, choosing a cylindrical aperture surface conformal with the circular
cylinder facilitates the analysis.
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n E = 0^

n̂

n E = 0^

Ea
^

Ma = Ea n

^
Ma = Ea n

PEC

PEC
Ea

PEC

aperture

(a) Original general problem with aperture and its PEC equivalent without aperture

no aperture

(b) Horn antenna with aperture and flange, and its PEC equivalent without aperture

Figure 7.5: The PEC equivalent of actual aperture antenna of arbitrary type and of horn antenna.

7.1.1 PECs of arbitrary shape

After the aperture surface has been defined, the metal parts are assumed to be PECs, and
the aperture theory is developed by using the PEC equivalent introduced in Section 4.3.1, as
follows (see Fig. 7.5a):

1. Assume an approximate tangential E-field Ea over the aperture. This assumption is
often based on an investigation of the dominant waveguide mode that can propagate
in the inner structure leading to the aperture.

2. Introduce the equivalent magnetic current Ma = Ea × n̂a, where n̂a is the outward
directed normal to the aperture surface.

3. Fill the volume inside the aperture with PEC.
4. Calculate the induced electric currents JS on the PECs caused by the sources Ma. This

can generally be done, e.g., by the Method of Moments.
5. Calculate the radiation fields from Ma and JS in free space.

This method is very accurate if the assumed form of Ea is accurate. The calculated fields
are valid everywhere except inside the surface of the PEC in the equivalent problem, such
as, e.g., inside the horn antenna in Fig. 7.5b. Note that we can improve both the accuracy
and the complexity of the results by moving the aperture from the opening of the horn
to the opening of the waveguide feeding it, and accordingly perform step 4 on the whole
horn flare. This approach closely resembles the Method of Moments approach explained in
Section 8.1.6.

7.1.2 Infinite PEC planes

It is very laborious to do the calculations in step 4 of the previous subsection if the outer
structure is complex, such as for horn antennas. However, for apertures in large ground
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ŷ

ẑ

x̂

ŷ

ẑ

x̂

2Ma

(a) The equivalent problem with Ma = Ea n
^

(b) Resulting problem after imaging:
2Ma radiating in free space.
Solution valid for z > 0.

Ma

Figure 7.6: The PEC equivalent of an aperture in an infinite ground plane and the resulting feed
problem after imaging.

planes we may simplify both steps 4 and 5 considerably by using imaging, as follows (see
Fig. 7.6):

1. Assume that the PEC ground plane is infinite in extent and remove it by using imaging,
corresponding to replacing Ma on the PEC by 2Ma radiating in free space.

2. Calculate the radiation from 2Ma in free space.

Note that this solution is only valid on the lit side of the plane PEC, i.e., on the side where
the magnetic sources are. On the shadow side the fields of the PEC equivalent are zero. In
the real problem the latter fields will be given from the form of the propagating modes inside
the antenna, that generates the aperture field.

The radiation field is now obtained directly from (4.48), (4.50) and (4.52) to be

E(r̂) =
1

r
e−jkrG(r̂) ; G(r̂) = 2CkIM (r̂)× r̂ , (7.1)

where I
M

(r̂) =
x

A

Ma(r′)ejkr
′·r̂dS ; Ma(r′) = Ea(r′)× n̂a , (7.2)

with the incremental source constant is Ck = −jk/(4π) as before.

7.2 Virtual apertures in free space

By using the equivalence principal we can calculate the radiation field from known tangential
E- and H-fields over any actual or virtual surface in space. This fact may be used to construct
radiation field solutions originating from a convenient virtual surface around the antenna,
over which we are able to find an acceptable approximation for the fields.

For a lens (or reflector) antenna we may choose a virtual plane aperture surface in front
of the lens (reflector), enclosing the lens (reflector) and the feed in a virtual cylinder, see
Fig. 7.7b(c). The tangential field components can be assumed to be zero everywhere over
the virtual cylinder, except inside the circular plane aperture defined by the rim of the
lens (reflector). In this area, we may find a good approximation for the fields by using ray



7.2. VIRTUAL APERTURES IN FREE SPACE 234

plane

aperture

plane

aperture

spherical

aperture
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(a) Free space

aperture of horn

(b) Free space

aperture of lens

(c) Free space

aperture of reflector

Figure 7.7: Three antennas with different choices of virtual closed surfaces S with free space aper-
tures.

over spherical

aperture

(a) Actual problem with main assumptions (b) Equivalent calculation model

Ea

Ha

n̂

^

^

E n = 0 ; n H = 0
over extended aperture surface

Ja = n Ha

Ma = Ea n

^ ^

Figure 7.8: Horn antenna with aperture surface coinciding with the wavefront of the aperture field.

techniques. In the calculation of the radiation field the aperture can then be regarded as an
aperture in a virtual closed surface, i.e., an aperture in free space.

We may also use the free space aperture approach to analyze some actual aperture antennas,
such as horn antennas. Then, we may avoid the complicated Method of Moments approach
described before2. We may do this in several ways. One way is similar to the case of the lens
and reflector apertures, using a virtual plane free space aperture in front of the horn. We may
also define a spherical aperture surface as shown in Fig. 7.8a. The rest of the closed surface
may be chosen arbitrarily, as we can simply neglect the contribution from it by assuming
zero fields there.

7.2.1 Free space and Huygens equivalents

When we have chosen the aperture surface, the aperture theory is developed by using the
free space equivalent described in Section 4.3.2, as follows:

2 This can be found in step 4 in Section 7.1.1 on page 232.
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1. Assume approximate forms of the tangential E-field Ea and H-field Ha over the aperture
in the virtual surface S. This assumption is normally based on a study of the fields
that propagate from a feed point inside an enclosed surface to the aperture.

2. Assume that the tangential components of both Ea and Ha are zero elsewhere over the
closed virtual surface.

3. Introduce the equivalent magnetic current Ma = Ea × na and electric current Ja =

n̂a×Ha over the aperture, where n̂a is the outgoing unit vector normal to the aperture.
4. Calculate the radiation field from Ja and Ma in free space.

The calculated fields are valid everywhere except inside the virtual closed surface, which can
be chosen arbitrary, yet preferably close to the antenna. The accuracy of the calculated
radiation fields depends on the antenna type. For reflectors, lenses and arrays the approach
is only accurate close to the main beam, and very inaccurate behind the aperture plane. For
horn antennas with large apertures the approach is almost as accurate as the PEC aperture
model, and it is much easier to use.

Sometimes we may assume that the E- and H-fields in the aperture are related by the free
space wave impedance η. This is in particular a good approximation if the aperture surface
coincides with the wavefront of the aperture fields and the aperture diameter is large in terms
of wavelengths. Then we have

ηHa = n̂a ×Ea , and Ea = −n̂a × ηHa .

This is the basic assumption of the Huygens equivalent , so we refer to it as the Huygens
approximation. This gives

ηJa = n̂a × ηHa = −Ea , (7.3)

so that Ma = Ea × n̂a = −ηJa × n̂a . (7.4)

We see that Ja and Ma together become the Huygens source in Section 4.4.3 with n̂ equal
to n̂a in (7.4). Therefore, the radiation field can now be expressed by using the free space
formulas as follows

E(r) =
x

S

G
H

(ηJa, n̂a, r̂)
1

R
e−jkrdS′ , (7.5)

G
H

(ηJa, n̂a, r̂) = Ck[ηJa − (ηJa · r̂)r̂− (ηJa × n̂a)× r̂] , (7.6)

where Ja = Ja(r̂) , R = |r− r′| , Ck = −jk/4π

and where GH (ηJa, n̂a, r̂) is the far-field function of the unit Huygens source. These expres-
sions are valid both in the radiating near-field and far-field regions. The simplified far-field
expressions become

E(r) =
1

r
e−jkrG(r̂) ; G(r̂) =

x

S

G
H

(ηJa, n̂a, r̂)ejk(r′·r̂)dS′ . (7.7)

Note that the aperture’s normal vector varies over the integration surface S, i.e., n̂a = n̂a(r′),
except when the aperture surface is plane. Expresion (7.5) - (7.7) are well suited for numerical
integration.
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7.2.2 Plane apertures

If the aperture is plane, n̂a is constant independent of the source coordinates. Therefore, the
far-field function may be expressed as

G(r̂) = Ck[I
J
− (I

J
· r̂)r̂− (I

J
× n̂a)× r̂] , (7.8)

where IJ is the radiation integral

I
J

=
x

A

ηJa(r′)ejk(r′·r̂)dS (7.9)

and Ck = −jk/(4π). G(r̂) in (7.8) may be expressed more compactly by introducing the
dyadic Green’s function GH (r̂) of the Huygens source. Then,

G(r̂) = I
J
·G

H
(r̂) , (7.10)

where the far-field function GH (ηJa, n̂a, r̂) in (7.6) for the Huygens source is expressed in
terms of the dyadic Green’s function GH (r̂) as

G
H

(ηJa, n̂a, r̂) = G
H

(̂lηJa, n̂a, r̂) = ηJa l̂ ·GH
(r̂) (7.11)

where ηJa = ηJa l̂.

From numerical standpoint, expressions in (7.8) - (7.9) have no particular advantages com-
pared to the more general expressions in (7.5) - (7.6). From analytical point of view, expres-
sions in (7.8) - (7.9) are clearly advantageous as we can reduce the radiation integral to a
Fourier transform.

7.3 Apertures in xy-plane

The equations in Sections 7.1 and 7.2 are quite general and desirable for making general
computer programs. We will now simplify the expressions for the case that the aperture is
in the xy-plane, in order to make the physical interpretation simpler, and in order to see
the difference between the PEC and the free space apertures more clearly. Moreover, the
aperture integral reduces to a double Fourier transform. This is more easily interpretable
than the original integral. It may also have an analytic solution, and it is also faster to
evaluate numerically. In this section we assume that the aperture field is given as

Ea(r′) = Eax(x′, y′)x̂ + Eay (x′, y′)ŷ ; Ha =
1

ηa
ẑ×Ea , (7.12)

with the source coordinates r′ = x′x̂ + y′ŷ over the aperture A in Fig. 7.9. This equation for
the H-field is based on one of the following two assumptions: either that there is one single
waveguide mode present in the aperture where ηa is the aperture impedance, or, that the
aperture is so large in terms of wavelength that ηa = η = 377 Ω the free space wave impedance.
In what follows we restrict the analysis to the latter so that the equivalent electric current
becomes

ηJa = ẑ× ηHa = −Ea(r′) . (7.13)
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y
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r'

A

Figure 7.9: Plane aperture with area A in xy-plane.

Now the electric current radiation integral in (7.9) becomes

I
J
(r̂) = Ẽax(kx, ky)(−x̂) + Ẽay (kx, ky)(−ŷ) , (7.14)

where

Ẽax(kx, ky) =
x

A

Eax(x′, y′)ej(kxx
′+kyy

′)dx′dy′ (7.15)

Ẽay (kx, ky) =
x

A

Eay (x′, y′)ej(kxx
′+kyy

′)dx′dy′ (7.16)

with kx = kx̂ · r̂ and ky = kŷ · r̂. Correspondingly the magnetic current radiation integral
in (7.2) becomes

I
M

(r̂) = Ẽay (kx, ky)(ŷ× ẑ) + Ẽax(kx, ky)(x̂× ẑ) . (7.17)

We see that the radiation integrals have reduced to scalar two-dimensional Fourier trans-
forms. We will in the next two subsections find the form of the far-field functions for this
plane aperture case, for both the PEC and Huygens apertures, and we will compare the
resulting formulas.

7.3.1 PEC aperture and its incremental element factor

The far-field function of the PEC aperture is now obtained from (7.1) and (7.17) to be

G(r̂) = 2Ck[(x̂× ẑ)× r̂]Ẽax(kx̂ · r̂, kŷ · r̂)

+2Ck[(ŷ× ẑ)× r̂]Ẽay (kx̂ · r̂, kŷ · r̂) .
(7.18)

We see that each of the two contributions to the far-field function is written as a product of
two factors. The first factor is the far-field function of the incremental magnetic current, and
the second is the radiation integral over the E-field in the aperture. The latter is expressed
as a two-dimensional Fourier transform. Thus, the far-field function of a plane aperture is
obtained by Fourier transformation of the aperture field multiplied this by the element factor
due to the incremental magnetic current.

We may conveniently introduce the forms of the radiation field of the incremental magnetic
current source in polar coordinates as given in the equations and substitute u = x̂ · r̂ =
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sin θ cosϕ and v = ŷ · r̂ = sin θ sinϕ, where the uv-coordinates were introduced in Section 2.3.6.
Then, we obtain,

G(θ, ϕ) =− 2Ck(cosϕθ̂ − cos θ sinϕϕ̂)Ẽax(k sin θ cosϕ, k sin θ sinϕ)

− 2Ck(sinϕθ̂ + cos θ cosϕϕ̂)Ẽay(k sin θ cosϕ, k sin θ sinϕ) .
(7.19)

7.3.2 Free space aperture and its incremental element factor

Similarly for the free space aperture, by using (7.8) and (7.14) we obtain

G(r̂) =− Ck[x̂− (x̂ · r̂)r̂− (x̂× ẑ)× r̂]Ẽax(kx̂ · r̂, kŷ · r̂)

− Ck[ŷ− (ŷ · r̂)r̂− (ŷ× ẑ)× r̂]Ẽay (kx̂ · r̂, kŷ · r̂) ,
(7.20)

where Ẽax and Ẽay are the same as before. Both terms of this far-field function are also
a product of two factors, like in (7.18). However, the incremental element factors in front
of Ẽax and Ẽay are different. By studying Section 4.4, we recognize them as the free space
far-field functions of the incremental Huygens source polarized in negative x- and negative
y-directions, respectively. Substitution of the expressions for them in polar coordinates gives

G(θ, ϕ) =− 2Ck cos2(θ/2)[cosϕθ̂ − sinϕϕ̂]Ẽax(k sin θ cosϕ, k sin θ sinϕ)

− 2Ck cos2(θ/2)[sinϕθ̂ + cosϕϕ̂]Ẽay (k sin θ cosϕ, k sin θ sinϕ) .
(7.21)

By comparing, we see that the only difference between the far-field functions of the PEC

and free space aperture models is due to the difference between the far-field functions of the
incremental magnetic current source and the Huygens source, respectively.

7.3.3 Power integration over aperture and maximum directivity

The total radiated power can be calculated from the power integral defined in equation (2.65)
by using

Gco(θ, ϕ) = G(r̂) · ĉo∗(θ, ϕ) , (7.22)

Gxp(θ, ϕ) = G(r̂) · x̂p∗(θ, ϕ) , (7.23)

where ĉo∗ and x̂p∗ are the unit vectors defining the co- and cross-polar radiation fields. The
power integral must be evaluated numerically. This can be difficult and time-consuming when
the aperture is large, because both the co- and cross-polar fields will have a lot of sidelobes
and may vary with ϕ.

However, when the Huygens approximation ηHa = ẑ × Ea is used, the total radiated power
Prad must be equal to the power passing through the aperture surface, so we may write

Prad =
x

A

1

2
(Ea ×Ha) · n̂dS =

1

2η

x

A

|Ea|2dS (7.24)

and the so-called power integral defined in Section 2.3.8 becomes P = 2ηPrad. This aperture
integral is much easier to evaluate than the radiation intensity integral. Also it can often be
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evaluated analytically. The directive gain of the aperture becomes

Dco(θ, ϕ) =
4π|Gco(θ, ϕ)|2

P
. (7.25)

The directivity at θ = 0◦ can be obtained from this by using G(r̂) in (7.18) for the PEC case,
or (7.20) for the free space case. The result is the same for both cases and becomes

D
0

=
4π

λ2

∣∣∣∣∣x
A

Eaco
(x′, y′)dx′dy′

∣∣∣∣∣
2

/
x

A

[
|Eaco

(x′, y′)|2 + |Eaxp
(x′, y′)|2

]
dx′dy′ , (7.26)

where Eaco = Ea · ĉo∗(0, 0) and Eaxp = Ea · x̂p∗(0, 0). Let us now introduce the mathematical
inequality ∣∣∣∣∣x

A

f(x, y)g(x, y)dxdy

∣∣∣∣∣
2

≤
x

A

|f(x, y)|2dxdy
x

A

|g(x, y)|2dxdy ,

which results from Schwarz inequality [1, Section 16.35]. If we use this with f(x, y) = Eaco(x, y)

and g(x, y) = 1, we find that∣∣∣∣∣x
A

Eaco
(x′, y′)dx′dy′

∣∣∣∣∣
2

≤ A
x

A

|Eaco
(x′, y′)|2dx′dy′ ,

where A is the area of the plane aperture over which Ea(x′, y′) is defined. From this and (7.26)
it follows that the maximum value of D0 appears when Eaxp = 0 and Eaco = constant over A.
This maximum is

Dmax =
4π

λ2
A . (7.27)

This is referred to as the maximum available directivity or gain of the antenna, and we used
it already in Section 2.5.2 to define the aperture efficiency . Previously, in Section 5.1.5, we
showed that the directivity of a short dipole and the maximum effective area on reception is
related by the same formula. The latter is actually generally valid for all antennas.

We see from the above that the aperture power integrals are identically the same for PEC

apertures and free space apertures, whereas the radiation intensity integrals are not identical
as the radiation patterns are not equal. However, for large apertures the values of the
two radiation intensity integrals asymptotically approach each other and the value of the
aperture power integral. The most accurate result for the power integral is always obtained
by integrating the far-field functions, in particular if the aperture diameter is small.

For convenience in the analysis to follow in Sections 7.4 and 7.5 we will omit the incremental
element factors, and consider only the Fourier transforms.

7.4 Rectangular plane aperture

Rectangular horn antennas and waveguide slots have normally plane rectangular apertures.
For such cases the aperture distribution can be ideally linearly polarized in the same direction
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Figure 7.10: Rectangular plane aperture in the xy-plane.

over the whole aperture (if excited for linear polarization). In addition, the distribution is
often separable in x′ and y′, according to

Eay (x′, y′) = A(x′)B(y′)ŷ for |x′| < a/2, |y′| < b/2 , (7.28)

and zero for |x′| > a/2 and |y′| > b/2, where we have assumed y-polarization.

The far-field function is given by (7.18) or (7.20) depending on whether the aperture is in a
ground plane or in free space. The integrand of Ẽay is separable, so we can write

Ẽay (kx̂ · r̂, kŷ · r̂) = Ã(kx̂ · r̂)B̃(kŷ · r̂) , (7.29)

where Ã and B̃ are the one-dimensional Fourier transforms of the aperture distributions A(x′)

and B(y′), respectively, over the aperture in Fig. 7.10. That is,

Ã(kx) =

∫ ∞
−∞

A(x′)ejkxx
′
dx′; B̃(ky) =

∫ ∞
−∞

B(y′)ejkyy
′
dy′ . (7.30)

Thus, for a rectangular aperture distribution the radiation pattern will be determined mainly
by the product of the Fourier transforms of the aperture distributions in the x- and y-
directions. In addition there is the incremental element factor of the magnetic dipole or
Huygens source, for the PEC and free space apertures, respectively.

7.4.1 E- and H-plane patterns

The E-plane patterns become

G
E

(θ) = −2CkÃ(0)B̃(k sin θ)θ̂ , (7.31)

G
E

(θ) = −2Ck cos2(θ/2)Ã(0)B̃(k sin θ)θ̂ , (7.32)

for the PEC and free space apertures, respectively, and the H-plane patterns become

G
H

(0) = −2Ck cos θÃ(k sin θ)B̃(0)ϕ̂ , (7.33)

G
H

(θ) = −2Ck cos2(θ/2)Ã(k sin θ)B̃(0)ϕ̂ , (7.34)

for the PEC and free space apertures, respectively. We see that the patterns of the PEC and
free space apertures are equal, except for the effect of the incremental source, i.e., the free
space Green’s function.
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Figure 7.11: Uniform aperture distribution in rectangular aperture.

7.4.2 Directivity and aperture efficiency

For the rectangular aperture the aperture power integral becomes

P = 2ηPrad ≈
∫ a/2

−a/2
|A(x′)|2dx′

∫ b/2

−b/2
|B(y′)|2dy′ . (7.35)

By which the directivity becomes separable according to

D
0

=
4π

λ2
aeffbeff , (7.36)

where aeff =

∣∣∣∣∣
∫ a/2

−a/2
A(x′)dx′

∣∣∣∣∣
2

/

{∫ a/2

−a/2
|A(x′)|2dx′

}
, (7.37)

beff =

∣∣∣∣∣
∫ b/2

−b/2
B(y′)dy′

∣∣∣∣∣
2

/

{∫ b/2

−b/2
|B(y′)|2dy′

}
, (7.38)

are effective aperture diameters. In the same way it can be shown that aeff ≤ a and beff ≤ b3.
Therefore, we may introduce the aperture area A = ab and write

D0 =
4π

λ2
eapA ; eap = exey , (7.39)

where eap ≤ 1 is the aperture efficiency . This is separable in two terms as shown, where

ex = aeff/a ; ey = beff/b . (7.40)

7.4.3 Uniform aperture distribution

The maximum aperture efficiency eap = 1 and the corresponding maximum directivity appear
when the aperture distribution is uniform in both planes as shown in Fig. 7.11, i.e.,

A(x′) = 1 for |x′| < a/2 ,

B(y′) = 1 for |y′| < b/2 ,
(7.41)

3 This achieved by Schwarz inequality as used in Section 7.3.3.
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Table 7.1: Radiation characteristics of uniformly illuminated rectangular aperture in the principal
planes when b� λ.

Topic Location Relative level

First null θ = arcsin(λ/b) −∞dB

First sidelobe θ = arcsin(1.5λ/b) −13.2 dB

3 dB half beamwidth θ = arcsin(0.445λ/b) −3.0 dB

and zero elsewhere. In this case the Fourier transforms of the aperture field become sinc
function, resulting in

Ã(k sin θ cosϕ) =

∫ a/2

−a/2
ejkx

′(x̂·r̂)dx′ = a
sin(ka sin θ cosϕ/2)

ka sin θ cosϕ/2
, (7.42)

B̃(k sin θ sinϕ) =

∫ b/2

−b/2
ejky

′(ŷ·r̂)dy′ = b
sin(kb sin θ sinϕ/2)

kb sin θ sinϕ/2
. (7.43)

The characteristics of the radiation pattern in E-plane are found by studying (7.31) - (7.32)
with B̃ given in (7.43). We see that the location of the nulls in the pattern is determined by
kb sin θ/2 = iπ where i = 1, 2, .... The sidelobe maxima are determined by kb sin θ/2 = π/2 + iπ

where i = 1, 2, .... The results are summarized in Table 7.1. The characteristics are the same
in H-plane. The sidelobe levels in the table are only correct when the incremental source
factor does not contribute significantly. This condition holds when b� λ for the E-plane and
a� λ for the H-plane.

Eq. (7.43) represents a universal radiation pattern for all uniformly illuminated apertures with
diameters b when plotted against (b/λ) sin θ, which is done in Fig. 7.124. The corresponding
radiation pattern when B(y′) = cos(πy′/b) for |y′| < b/2 is plotted for comparison. The
latter aperture distribution, which corresponds to the H-plane distribution of an open-ended
waveguide, gives broader main beam and lower sidelobes.

The total radiation patterns including incremental source factor in (7.31) - (7.34) are plotted
in Fig. 7.13? for a = b = 8λ. We see that for the PEC aperture the magnetic current distri-
bution in the aperture makes the sidelobes in E-plane higher than in H-plane. Note that we
cannot calculate any radiation pattern behind the aperture plane, i.e., for |θ| > 90◦, which
by definition is a null-field region when using the present PEC equivalent. For a free space
aperture the Huygens source makes the patterns equal in E- and H-planes, and the formulas
can be used even behind the aperture plane.

Fig. 7.14 shows a contour plot?. We see that the sidelobes are located in the principal planes
with very low levels in between them. This is typical for rectangular apertures and a result
of the separability of the aperture distribution.

4 There exist Matlab code for all figures of which the caption start with ?.
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Figure 7.12: ?Universal radiation pattern of rectangular aperture versus width for uniform and
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Figure 7.13: ?Examples of radiation patterns for uniform field distribution over a square aperture
in an infinite ground plane (in E- and H-planes) and in free space (in both planes). The aperture
diameter is 8λ.
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Figure 7.14: ?Universal contour plot of the radiation pattern of a uniform field distribution over a
rectangular aperture. 5 dB contours down to −35 dB. The aperture diameters are a and b in the xz-
and yz-planes, respectively. The maximum level in the center of the main beam is 0 dB.

7.5 Circular aperture with BOR1 excitation

Conical horn antennas and many reflector antennas have circular apertures, as shown in
Fig. 7.15. When they are excited for a y-polarized BOR1 type radiation, the aperture fields
are of the form

Ea(ρ′, ϕ′) = [E
E

(ρ′) sinϕ′ρ̂′ + E
H

(ρ′) cosϕ′ϕ̂′] for ρ′ ≤ d/2 , (7.44)

where d is the aperture diameter, ρ̂′ is the unit vector in the radial ρ′-direction with r′ =

ρ′ρ̂′ = ρ′(cosϕ′x̂+sinϕ′ŷ), and EE (ρ′) and EH (ρ′) are the aperture distributions in the E- and
H-planes, respectively. By introducing x̂ = cosϕ′ρ̂′ − sinϕ′ϕ̂′ and ŷ = sinϕ′ρ̂′ + cosϕ′ϕ̂′, this
can be written

Ea(ρ′, ϕ′) = Eay (ρ′, ϕ′)ŷ + Eax(ρ′, ϕ′)x̂ , (7.45)

where Eay (ρ′, ϕ′) = Eco45◦ (ρ′)− Exp45◦ (ρ′) cos(2ϕ′) (7.46)

and Eax(ρ′, ϕ′) = Exp45◦ (ρ′) sin(2ϕ′) , (7.47)

with Eco45◦ (ρ′) =
1

2
[E

E
(ρ′) + E

H
(ρ′)] (7.48)

and Exp45◦ (ρ′) =
1

2
[E

E
(ρ′)− E

H
(ρ′)] (7.49)

are the co- and cross-polar aperture fields in the 45◦-plane. These BOR1 relations for cir-
cular apertures in cylindrical coordinates can be derived in the same way as the corre-
sponding relations in the spherical (θ, ϕ) coordinate system in equations (2.83)-(2.87) in
Section 2.4.2.
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Figure 7.15: Circular plane aperture in xy-plane

7.5.1 Aperture field and far-field function

If the aperture is large, the radiation field is given by (7.18) or (7.20) with

Ẽay (kx̂ · r̂, kŷ · r̂) =

∫ d/2

0

∫ 2π

0

Eay (ρ′, ϕ′)ejkρ
′ρ̂′·r̂dϕ′ρ′dρ′ , (7.50)

Ẽax(kx̂ · r̂, kŷ · r̂) =

∫ d/2

0

∫ 2π

0

Eax(ρ′, ϕ′)ejkρ
′ρ̂′·r̂dϕ′ρ′dρ′ , (7.51)

obtained from (7.15) - (7.16). The ϕ′-integrals can be evaluated analytically by introducing
the x- and y-components of ρ̂′ and r̂, which give

ρ̂′ · r̂ = sin θ(cosϕ′ cosϕ+ sinϕ′ sinϕ) = sin θ cos(ϕ− ϕ′) (7.52)

and using (see Appendix E)∫ 2π

0

ejkρ
′ sin θ cos(ϕ−ϕ′)dϕ′ = 2πJ

0
(kρ′ sin θ) ,∫ 2π

0

cos(2ϕ′)ejkρ
′ sin θ cos(ϕ−ϕ′)dϕ′ = −2π cos(2ϕ)J

2
(kρ′ sin θ) ,∫ 2π

0

sin(2ϕ′)ejkρ
′ sin θ cos(ϕ′−ϕ)dϕ′ = −2π sin(2ϕ)J

2
(kρ′ sin θ) ,

with J0 and J2 the zeroth and second order Bessel functions, respectively. Then, for the free
space aperture we finally obtain

Ẽay (kx̂ · r̂, kŷ · r̂) = Ẽay (θ, ϕ) = Ẽco45◦ (θ)− Ẽxp45◦ (θ) cos(2ϕ) , (7.53)

Ẽax(kx̂ · r̂, kŷ · r̂) = Ẽax(θ, ϕ) = Ẽxp45◦ (θ) sin(2ϕ) , (7.54)

where Ẽco45◦ (θ) = 2π

∫ d/2

0

Eco45◦ (ρ′)J
0
(kρ′ sin θ)ρ′dρ′ , (7.55)

Ẽxp45◦ (θ) = −2π

∫ d/2

0

Exp45◦ (ρ′)J2(kρ′ sin θ)ρ′dρ′ . (7.56)
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If we introduce a normalized radius variable ρ = ρ′/d in the above two expressions, we get
them in the universal form

Ẽco45◦ (θ) = 2πd2

∫ 1/2

0

Eco45◦ (ρ)J
0
(kρd sin θ)ρdρ , (7.57)

Ẽxp45◦ (θ) = −2πd2

∫ 1/2

0

Exp45◦ (ρ)J
2
(kρd sin θ)ρdρ , (7.58)

where Eco45◦ (ρ) and Exp45◦ (ρ) are the aperture distributions as a function of the normalized
aperture radius. The universal form allows us to calculate general radiation patterns and
study them for different types of aperture distributions. These pattern shapes become in-
dependent of the aperture diameter d if they are plotted as a function of kd sin θ. The total
far-field functions of the PEC and free space apertures are found by using (7.18) and (7.20),
respectively, together with (7.53) - (7.56). We find that the co-polar far-field function of the
free space aperture in the 45◦-plane is proportional to

Gco45◦ (θ) = Ẽco45◦ (θ) cos2(θ/2)

and the cross-polar to
Gxp45◦ (θ) = Ẽxp45◦ (θ) cos2(θ/2) .

7.5.2 Uniform aperture distribution

When the aperture distribution is entirely co-polar with constant amplitude and phase we
have

Eco45◦ = 1 for ρ ≤ d/2 (7.59)

and Exp45◦ (ρ) = 0. Then, we get

Ẽco45◦ (θ) =

∫ d/2

0

J0(kρ sin θ)ρdρ . (7.60)

If we substitute t = kρ sin θ and use∫ T

0

J0(t)tdt = TJ1(T ) , (7.61)

we get the co-polar radiation pattern

Ẽco45◦ (θ) =
2π

(k sin θ)2

∫ kd sin θ/2

0

J
0
(t)tdt = 2π(d/2)2 J1

(kd sin θ/2)

kd sin θ/2
. (7.62)

This has a maximum of π(d/2)2 for θ = 0. The directivity becomes

D0 =
4π

λ2
π(d/2)2 =

(
πd

λ

)2

. (7.63)

The universal radiation pattern is plotted in dB in Fig. 7.16 together with that of a circular
aperture having a J0(k012s′/d) distribution, where k01 = 2.405 makes the aperture distribution
zero at ρ′ = d/2 ?. The latter aperture distribution will be treated in details in Section 8.8.
The location and relative level of the first null, the 3 dB beamwidth, and the first sidelobe,
are shown in Table 7.2. This can be compared to Table 7.1 for rectangular apertures. The
sidelobes are circular lobes around the main beam as seen in the contour plot in Fig. 7.17?,
to be compared to Fig. 7.14 for rectangular apertures.
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Figure 7.16: ?Universal radiation patterns of circular aperture with uniform and tapered aperture
distributions. The tapered aperture distribution is the zeroth order Bessel function with a null at
the rim.

Figure 7.17: ?Universal contour radiation pattern of circular aperture with uniform aperture dis-
tribution. 5 dB contours down to −35 dB.
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Table 7.2: Radiation characteristics of uniformly illuminated circular aperture in the principal
planes when d� λ.

Topic Location Relative level

First null θ = arcsin(1.2λ/d) −∞dB

First sidelobe θ = arcsin(1.65λ/d) −17.6 dB

3 dB half beamwidth θ = arcsin(0.51λ/d) −3.0 dB

7.5.3 Gaussian aperture distribution

The Gaussian aperture distribution is of interest because its far-field function has Gaussian
shape as well, see Fig. 7.18. We consider a plane free space aperture extending to infinity,
with a y-polarized aperture distribution of the form

Ea(ρ) = e−(ρ/ρa)2

ŷ = e−(x′/ρa)2−(y′/ρa)2

ŷ , (7.64)

ρa is referred to as the 8.7 dB radius or the 1/e radius because the field at ρ = ρa is 1/e or
8.7 dB less relative to the field at ρ = 0.

The extent of the aperture is infinite, so we may choose either to analyze it as a rectangular or
circular aperture. We choose the former because the integrations are simpler. The aperture
integral function becomes separable as in (7.28), so

Ẽay (kx̂ · r̂, kŷ · r̂) = Ã(kx̂ · r̂)B̃(kŷ · r̂) , (7.65)

with Ã(kx̂ · r̂) =

∫ ∞
−∞

e−(x′/ρa)2

ejkx
′x̂·r̂dx′ (7.66)

and correspondingly for B̃(kŷ · r̂). The exponent of the integrand can be simplified as fol-
lows (

x′

ρa

)2

− jkx(x̂ · r̂) =

[
x′

ρa
− 1

2
jkρa(x̂ · r̂)

]2

+

(
1

2
kρax̂ · r̂

)2

.

Further, we may use ∫ ∞
−∞

e−(t−t
0
)2/ρ2

adt =
√
πρa

to obtain

Ã(kx̂ · r̂) =
√
πρ2

ae
−( 1

2kρax̂·r̂)
2

,

B̃(kŷ · r̂) =
√
πρ2

ae
−( 1

2kρaŷ·r̂)
2

.
(7.67)

If we introduce

(x̂ · r̂)2 + (ŷ · r̂)2 = (sin θ cosϕ)2 + (sin θ sinϕ)2 = sin2 θ ,

the aperture Fourier transform factor becomes

Ẽ(kx̂ · r̂, kŷ · r̂) = Ẽ(θ) = πρ2
ae
− sin2 θ/ sin2 θa ; sin θa = 2/(kρa) , (7.68)



249 CHAPTER 7. RADIATION FROM APERTURES

ρ'

1
e

2ρa

Eay (ρ')

-60

-50

-40

-30

-20

-10

0

R
e

la
ti
v
e

 l
e

v
e

l 
(d

B
)

3.02.01.00.0
sin(θ)/sin(θa)

Figure 7.18: ?The Gaussian aperture distribution (left) and its radiation pattern (right).

where θa is the 8.7 dB half-beamwidth. The total far-field function is found by using this
in (7.18) or (7.20) for the PEC or free space apertures, respectively.The power integral over
the aperture becomes

P = 2ηPrad =

∞x

−∞
|Ea|2dx′dy′ = 2π

∫ ∞
0

e−2(ρ′/ρa)2

ρ′dρ′ =
π

2
ρ2
a , (7.69)

which was obtained by using the known integral∫
xe−x

2

dx = −1

2
e−x

2

+ C .

This gives the directivity

D
0

=
4π|G(ẑ) · ŷ|2

2ηPrad
=

4π

λ2
2πρ2

a = (
√

2kρa)2 =
8

sin2 θa
. (7.70)

We see that the effective aperture area becomes Aeff = D0λ
2/4π = 2πρ2

a. The radius of this
effective aperture is equal to

√
2 times the 8.7 dB radius ρa. The radiation pattern in dB

decreases uniformly with θ according to

20 log |G(θ)/G(0)| = 20 log |E(θ)/E(0)| = (sin θ/ sin θa)2 · (−8.7 dB) ,

where we have neglected the θ-variation of the incremental element factor. Thus, the Gaus-
sian aperture distribution has a radiation pattern in dB which decreases quadratically with
increasing sin θ. This property makes the Gaussian beam a plausible approximation to most
main beams of pencil-beam antennas. The ideal Gaussian radiation pattern has no sidelobes.
If the aperture is finite, the Gaussian aperture distribution is truncated, and sidelobes will
appear in the radiation pattern.

7.5.4 Tapered aperture distributions

In practice the aperture distribution will be tapered to a finite low value at the aperture rim.
Generally, a tapered aperture distribution will reduce both the sidelobes and the aperture
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efficiency, compared to that of a uniformly illuminated aperture. Therefore, in antennas
where the aperture distribution can be chosen, e.g., in dual-reflector antennas and large
arrays, it is often chosen as a compromise between high efficiency and low sidelobes. As
an example we consider the truncated Gaussian aperture distribution, which over a circular
aperture has the form

Ea(ρ) =

{
e−(ρ/ρa)2

ŷ for ρ < d/2
0 for ρ > d/2

. (7.71)

The aperture illumination taper is defined by −20 log |Ea(d/2)/Ea(0)|. Fig. 7.19 shows the
universal radiation patterns for different aperture illumination tapers, and the aperture ef-
ficiency as a function of the aperture taper?. The results have been produced by numerical
integration of the radiation integral in (7.57).

7.6 Gaussian beam

The purpose of this section is to study the Gaussian aperture distribution in more details
by including a spherical phase-front in the aperture. This will give us the equations used to
transform a Gaussian beam from the near-field to the far-field.

In order to find the near-field of the Gaussian aperture distribution we need to evaluate the
near-field radiation integral in equations (4.37) and (4.39) in Section 4.2.1. These integrals
are for the Huygens equivalent of the form (for kR� 1)

E(r) = Ck
x

A

[ηJa − (ηJa · R̂)R̂− (ηJa × ẑ)× R̂]
e−jkR

R
dx′dy′ , (7.72)

where R̂ = R/R with

R = r− r′ = (x− x′)x̂ + (y − y′)ŷ + zẑ , R =
√

(x− x′)2 + (y − y′)2 + z2 .

Let us consider observation points close to the axis, so that the paraxial approximation may
be used, i.e.,

R̂ ≈ ẑ and R = z (7.73)

in amplitude factors and

R ≈ z +
1

2z
[(x− x′)2 + (y − y′)2] (7.74)

in phase terms. Then,

E(r) ≈ −2Ck
1

z
e−jkz

x

A

Ea(x′, y′)e−jk
1
2z [(x−x′)2+(y−y′)2]dx′dy′ . (7.75)

In order to generalize it we assume that the Gaussian aperture field has a spherical wavefront
with curvature Ca, i.e., (see Fig. 7.20)

Ea(x, y) = E0e
−ρ′2/ρ2

ae−jk
1
2Caρ

′2
ŷ , (7.76)
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Figure 7.20: Gaussian aperture distribution and its phase center.

where E0 is a constant and ρa is the 8.7 dB radius in the aperture. The quadratic phase term
is seen to represent a spherical phase-front from the following expansion of R, which is valid
under the paraxial approximation,

R =
√
L2 + ρ′2 ≈ L+ [ρ′2/(2L)] for ρ′ � L , (7.77)

where z = −L is the center of the sphere, so the wavefront curvature is Ca = 1/L. The
aperture integral is separable in x′ and y′, and the former of these factors becomes

Ix =

∫ ∞
−∞

e−(x′/ρa)2−jkx′2/(2L)−jk(x−x′)2/(2z)dx′ . (7.78)

The y′ integral gets a similar form. It is rather laborious to solve (7.78) analytically, yet, it is
possible. The result is simple and given in the next subsection. It can for all z be expressed
in the same Gaussian form as the original aperture distribution. Therefore, the resulting
expression valid for all z is referred to as a Gaussian beam. It is also possible to show that
the Gaussian beam is a field solution in free space under the paraxial approximation by
directly inserting the results below into Maxwell’s equations.

7.6.1 Gaussian near-field

For all z the Gaussian beam can be expressed by

E(r) = E
0

ρa
ρ(z)

e−ρ
2/[ρ(z)]2e−jk

1
2C(z)ρ2

ejφ(z)e−jkzŷ , (7.79)

where r = ρρ̂+ zẑ and
ρ(z) =

√
(ρdif(z))2 + (ρGO(z))2 (7.80)

is the 8.7 dB radius of the beam at r = z,

C(z) =
1

(L+ z)

[
1 +

L

z

(
ρdif(z)

ρ(z)

)2
]

(7.81)

is the wavefront curvature at r = z, and

φ(z) =
π

2
− arctan(ρ

GO
(z)/ρdif(z)) (7.82)
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Figure 7.21: Cross section of GO cone and diffraction cone.

is called the phase slippage and represents the phase in the center of the beam at r = z

relative to the phase at z = 0, when the propagation phase −kz has been removed. In these
equations

ρdif(z) = 2z/(kρa) (7.83)

is the diffraction cone radius, and

ρGO(z) = (z + L)ρa/L = (1 + Caz)ρa (7.84)

is the Geometrical Optics (GO) cone radius. Both these expressions are explained in the next
paragraph.

ρdif defines a conical surface with its vertex in the aperture at z = 0. The cross section is
shown in Fig. 7.21. The cone angle is inversely proportional to the wavelength divided by
the aperture radius ρa, in the same way as the width of the far-field radiation patterns based
on aperture diffraction, see Section 1.3.2. Examples are the radiation patterns of aperture
distributions with constant phase, shown in Fig. 7.12, 7.16 and 7.19. Therefore, we refer
to ρdif(z) as the diffraction cone radius. Similarly, ρGO(z) defines a cone with its vertex in
the point z = −L and with the cone angle proportional to ρa/L. This corresponds to a GO

continuation of the aperture field5. Therefore, we refer to ρGO(z) as the GO cone radius. We
will discuss these two contributions to the beam radius in more details in Section 7.6.4 and
Section 7.6.5.

The Gaussian beam formulas have been implemented in a Matlab code which can be used
to produce numerical versions of the curves in Fig. 7.22.

7.6.2 Phase center of Gaussian beam

It is possible to find the phase center of the Gaussian beam at any z location by using the
wavefront curvature C(z). The phase center is, according to Section 2.3.7, the center of
curvature of the wavefront. The radius of curvature is given by Rpc(z) = 1/C(z), so therefore
the near-field phase center location for the wavefront at a distance z from the aperture
becomes

zpc = z −Rpc(z) = z − 1

C(z)
. (7.85)

Using the above equations we get

zpc = −L(ρGO(z))2/

[
(ρ(z))2 +

L

z
(ρdif(z))

2

]
≈ −L(ρGO(z))2/(ρ(z))2 . (7.86)

5 See also Section 1.3.2.
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The latter simplest formula for zpc is actually quite accurate and very useful. It tells us that
the phase centre is at the aperture z = 0 when the diffraction cone radius ρdif(z) dominates
over the GO cone radius ρGO(z), and at z = −L when ρGO(z)� ρdif(z). Both of the two cone
radii ρdif(z) and ρGO(z) vary linearly with distance. The former diffraction cone is zero in the
aperture and increases linearly with z, whereas the latter GO cone is zero at z = −L which
is the centre of curvature of the phase front at z = 0. It varies also linearly with increasing
z, but the slope depends on the sign of L, i.e., on whether the phase-front is concave (L
negative) or convex (L positive) in the aperture plane. See also Fig. 7.22 and the following
subsections.

7.6.3 Gaussian far-field

In order to find the expression for the far-field we introduce the 8.7 dB beamwidth

θ0 = lim
z→∞

(
ρ(z)

z

)
=
√
θ2

dif + θ2
GO

, (7.87)

where θdif = 2/(kρa) and θ
GO

= ρa/L (7.88)

(both in radians) are the beamwidth contributions due to aperture diffraction and GO trans-
mission, respectively. These choices of θ0 , θdif and θGO in radians will make the result more
valid and usable for broad beams than the alternative choice based on

tan θ0 = lim
z→∞

(
ρ(z)

z

)
=
√

tan2 θdif + tan2 θGO .

By foregoing choices the formula for θ
GO

corresponds to measuring ρa as the length along a
curved wavefront and not radially along a straight line. The phase center is located at

zpc = −L(θ
GO
/θ

0
)2 .

Furthermore, when z approaches infinity we may use

r =
√
z2 + ρ2 ≈ z +

1

2z
ρ2 ≈ z +

1

2
zθ2

and C(z) = 1/(z − zpc) ≈ (1/z) + (zpc/z
2) ,

to obtain

z +
1

2
C(z)ρ2 ≈ z +

1

2
C(z)z2θ2 ≈ z +

1

2
zθ2 +

1

2
zpcθ

2 ≈ r +
1

2
zpcθ

2 ,

which is valid for small θs. This gives the far-field

E(r) =
1

r
e−jkrG(r̂) (7.89)

and the far-field function

G(r̂) = E
0

ρa
θ0

e−(θ/θ
0
)2

e−j
1
2kzpcθ

2

ejφ∞ ŷ , (7.90)

with φ∞ = − arctan(θdif/θGO) . (7.91)
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The G(r̂) in (7.90) and that resulting from (7.68) should be equal for L → ∞. Although
they are not the same, the differences are small for small θ and are explained by the paraxial
approximation used in the derivation of (7.90). Note that θ0 = 2/(kρa) when L → ∞. It
is clear that the beamwidth has increased compared to that in (7.68), due to the spherical
phase in the aperture, with the factor

q =
(θ

0
)with phase error

(θ0)without phase error
=

√
θ2

dif + θ2
GO

θ2
dif

=
√

1 + (∆φ)2 , (7.92)

where ∆φ = (kρ2
a)/(2L)

is the phase error at ρ = ρa in the aperture. The corresponding directivity reduction is 1/q2.
This can also be found by comparing G(r̂) resulting from (7.68) with G(r̂) in (7.90) as follows.
The power integrals in the aperture are equal if E0 = 1 and ρ0 = ρa. Therefore, the ratio
between the directivities (i.e., the phase efficiency) is

(D
0
)with phase errors

(D0)without errors
=

(
ρa/θ0

2Ckπρ2
a

)2

=

(
2

kρaθ0

)2

=
θ2

dif

θ2
0

=
1

q2
≈ 1−∆φ2 ,

(7.93)

where the expansion (1 + x)−1 ≈ 1− x for small x was used to get the final expression. This
equation is actually quite general. Phase errors in the aperture cause a gain reduction and a
broadening of the beam. For arbitrary but small phase errors, it can be found that the gain
reduction is given by the same formula 1−∆φ2 with ∆φ2 the mean square phase error around
the mean phase error, both averaged over the aperture, with the amplitude of the aperture
distribution used as weighting factor in the averaging process, see Eq. (9.91).

7.6.4 Aperture diffraction by constant phase aperture

When there is a plane phase-front in the aperture, i.e., L =∞, the 8.7 dB beam radius varies
from ρa in the aperture to

ρ(z) =
√

(ρdif(z))2 + ρ2
a ; ρdif(z) =

2z

kρa
, (7.94)

at a distance z from the aperture, see Fig. 7.22?. This result is qualitatively valid for all
aperture distributions with constant phase. The radius of the beam is approximately equal
to the aperture width ρa in the near-field region 0 < z < πρ2

a/λ ≈ D2/λ where D ≈ 2ρa.
This is a result of GO transmission of a wave with plane phase-front. In the far-field region
the beamwidth starts to increase and approaches a linear increase with z, in a way that the
angular extent becomes constant and is given approximately by θ0 = λ/(πρa) ≈ λ/D. This
effect is commonly referred to as aperture diffraction.

7.6.5 GO radiation from aperture with strongly curved wavefront

When the phase-front of the aperture field curves so much that the phase error at ρ = ρa is
much larger than 60◦, i.e.,

φ(ρa)− φ(0) = kρ2
a/(2L)� 1 , i.e., L� 1

2
kρ2

a , (7.95)
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Figure 7.22: ? 8.7 dB beamwidth of Gaussian beam as a function of distance from the aperture.
(a) Constant phase aperture. (b) Spherical phase aperture.

we see that the beam radius changes with increasing z according to

ρ(z) ≈ ρ
GO

(z) = (z + L)ρa/L . (7.96)

Thus, the beam diverges linearly with increasing z already from the aperture plane. The
angular beamwidth is constant and equal to θ0 = ρa/L. The phase errors in the aperture are
spherical. They may, e.g., originate from the far-field of an antenna located at z = −L, as
the far-field always has a spherical phase-front. If the phase errors are sufficiently large the
beam simply continues to propagate through the aperture in the same way as it did to come
to the aperture.

The equations in Subsection 7.6.3 are approximately valid also for broad beams resulting
from strongly curved phase-fronts in the aperture, provided ρa is measured along the curved
phase-front and not in the aperture plane. The GO transmission dominates in this case
for which the beam has the same angular extent at all radial distances from the spherical
aperture, when measured from the center of curvature of the wavefronts. See Fig. 7.22 and
Fig. 7.23?.
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7.6.6 Alternative expressions for Gaussian beam parameters

The Gaussian near-field beam as expressed by the equations (7.79)-(7.84) are easily inter-
pretable by introducing the diffraction and GO cones. However, it is also possible to express
the beam parameters conveniently by means of the beam waist ρmin and the beam waist
location zmin, see Fig. 7.24. Then, the equations become simpler. The beam waist is the
narrowest 8.7 dB radius ρ(zmin) = ρmin along the beam. This can be found by requiring that
∂ρ(z)/∂z = 0 with ρ(z) given by Eq. (7.80). This has the solution

zmin = −Lθ2
GO
/(θ2

dif + θ2
GO

) , (7.97)

where θdif and θGO are the same as in (7.88). This location is for positive L behind the
aperture, where the field solutions are not valid. Still, zmin defines where the beam waist
would have been located if the Gaussian beam had been continued for negative z. When L

is negative, zmin is in front of the aperture. After zmin has been calculated, the beam waist
ρmin = ρ(zmin) is easily evaluated from (7.80).

Now we may introduce the confocal distance

zc = πρ2
min/λ , (7.98)

which corresponds to the far-field distance D2/λ of an aperture with diameter D =
√
πρmin.

Then, (7.80)-(7.82) simplify to

ρ(z) = ρmin

√
1 +

(
z − zmin

zc

)2

,

C(z) =
(z − zmin)

(z − zmin)2 + z2
c

,

φ(z) = arctan

(
z − zmin

zc

)
+ arctan

(
zmin

zc

)
.

(7.99)

Therefore, if we first calculate the location and radius of the beam waist from the aperture
field parameters ρa and L, we can use the simple formulas in (7.99) to calculate the beam
radius and center of curvature at any location z.

7.7 Complementary comments

Beams are often used to expand the field radiated by an aperture. A number of different
type of beams have been introduced in the literature, the most popular of which are listed
below

• Gaussian Beams (GB)
• Higher order Gaussian-Laguerre Beams (GLB) beams
• Higher order Gaussian-Hermite Beams (GHB) beams
• Bessel Beams (BB)
• Gaussian-Ray Basis Functions (GRBF)
• Complex Source Points (CSP)
• Complex Conical Beams (CCB)
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2ρa2ρmin |E(ρ)|
|E(ρ)|
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Figure 7.24: Continuation of Gaussian beam for negative z and illustration of location of beam
waist. The dotted lines show the GO and diffraction cones when drawn from the original aperture
at z = 0, and the solid lines show the GO and diffraction cones when drawn from the beam waist at
z = zmin.

GB [3]-[4], i.e., those treated in the previous section of this chapter, are the most commonly
used, especially for representing fields radiated from conical corrugated horns and from re-
flectors. GB satisfies Maxwell’s equations only in the paraxial region, namely close to the
axis of propagation, but they may sometimes in practice work well to describe fields out-
side this region as well. GLB or GHB [5]-[6] deal with expansions around a preferred axis
of propagation with the higher order terms representing the off-axis variations. They have
the advantage of constituting an orthogonal set, and they are often used as basis for a mode
matching technique. GLB and GHB are more suitable for describing rectangular and circular
apertures, respectively. Their descriptive capability relaxes but not removes the restriction
to the paraxial region, and this produces slow convergence when describing far out-of axis
lobes.

In Fourier Optics, the field is often represented by a discrete spectrum of Bessel Beams
(BB) [7]. BB are quite similar to GHB, but in spite of the latter they do not diffract as they
propagate, thus exhibiting a non-physical behavior in the far-field region. However, they are
useful in near-field and laser beam representations.

In contrast to the previously described GB plus higher order beams, which can provide a
global description from an aperture, Gabor-type (or phase-space) expansions [8] and [11]
provide a local far field (aperture field spectrum) description. The field is expanded using
a lattice of beams that emerge from a set of points in the aperture plane and propagate
from each point in a lattice of directions. The beam amplitudes are determined by the local
radiation properties (local spectrum) of the aperture near the lattice spectral points. This
beam representation can be viewed as a “local” expansion of the aperture field spectrum.
It is seen that for off-axis observations, the localized nature of the spectral elements implies
more rapid convergence than with global expansions [12].

In the Gabor-based Gaussian beam expansion, the basis set is complete. This poses a restric-
tion on the choice of the spatial and spectral resolutions. The Gabor-frame scheme in [8]-[9]
(termed there “windowed Fourier transform frame”) relaxes this restriction by using over-
complete sets of GB’s, thus enabling the user to choose the spatial and spectral resolutions
so that they best fit the local properties of the source distribution. Furthermore, the flexi-
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bility gained by using the over-complete frame expansion allows an efficient representation
of ultrawide band (UWB) fields [10]-[11].

GRBF [13]-[14] are used to locally match the far field as in the Gabor expansion; however,
they have more degrees of freedom. This is obtained by introducing an empirical extra
parameter to a conventional Gaussian beam, in order to manually control beam width at a
given distance from the source.

An alternative to the global expansion is represented by Complex Source Points (CSP) ex-
pansion [15]-[17]. A spherical wave of type e−jkR/R with R =

√
(r− r′) · (r− r′ respects

the wave equation also when the center of phase is formally displaced in a complex space
r′ = r0 − jb. The waveform obtained by this complex displacement is called CSP. After the
analytical continuation, the complex distance R is a multivalued function which respect to
the radiation conditions if <(R) ≥ 0. R can be equal to zero, and therefore the field is singular
on a disc of radius |b| orthogonal to b and centered in r

0
. In the half space (r − r0) · b > 0

the CSP has a behavior quite similar to a GB propagating along b with waist |b|. CSP differs
from a GB only far from axis and close to the disk of singularity (where the GB is regular).
We emphasize that the GB is an approximate paraxial solution of the wave equation, while
the CPS is an exact solution of the wave equation.

CSP have been used for expanding space domain Green’s functions for layered dielectric
media [18] and [21]. To this end, the spectral Green’s function is represented in terms
of exponentials by using GPOF method, thus leading to the CSP expansion by using the
Sommerfeld integral . A similar technique is used to regularize the Kernel of 3D integral
equation [20].

A complex source representation of an arbitrary source field inside a spherical region is based
on the complex Huygens’ principle. This was first proposed in [21], where an exact CPS

expansion for arbitrary fields is presented in which the beams are launched from a single
point in space and their coefficients are determined from the radiated field on a sphere in
real space. In [20] the CPS expansion is obtained first by constructing equivalent currents
on a spherical surface using the spherical wave expansion of the original sources, thereafter
by extending the surface in complex space to obtain a continuous equivalent distribution
of CPS, and finally by properly sampling the continuous distribution to obtain a discrete
expansion.

The Conical beams introduced in [21] present a selective concentration of energy around the
surface of a cone, and their representation rigorously satisfies the wave equation. An aperture
field representation of these beams is generated in a natural way starting from the spectral-
domain radiation integral, by expanding the electric field spectrum in a Fourier series, and
by approximating the obtained Fourier series coefficients by a sum of complex exponentials
using the generalized pencil-of-function method. This transforms the radiation integral to a
simpler form which can be evaluated analytically.

7.8 Exercises to Chapter 7

1. Quadratic apertures in PEC and free space: Consider two quadratic radiating apertures,
one located in a PEC ground plane, and the other located in an aperture plane in free space.
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Assume that the aperture fields in both cases are uniformly distributed over the aperture, i.e.,

Ea(x, y) = E0 ŷ , Ha(x, y) = −1

η
E0 x̂ ,

for |x| < a/2 and |y| < a/2 where η is the free space wave impedance and ŷ is the direction
of the polarization. Write down the expressions for the far-field functions for both apertures.
Find the expressions for the co- and cross-polar far-field functions for the two cases for a
desired linear y-polarization. Assume that a = 3λ.What are the levels in dB for the relative
cross-polar field at θ = 10◦ and θ = 20◦ in the ϕ = 45◦ plane for each of the two cases? Find
the levels in dBi for the relative sidelobe envelopes of the co-polar field at θ = 90◦ in the
ϕ = 0◦ and 90◦ planes for both apertures.

2. Cross-polarization for PEC apertures: Consider the PEC aperture in exercise 7.1. Derive
an expression for the location of the first sidelobe in the ϕ = 45◦ plane, and find an expression
for the relative level of it in dB. How does the level vary with increasing a.

3. Cross-polarization due to aperture field: Consider the same two apertures as in exer-
cise 7.1, with the same desired polarization. Assume that the aperture field is now

Ea = Ecoŷ + Expx̂ , Ha = −1

η
Ecox̂ +

1

η
Expŷ .

Assume that Exp = 0.005Eco and Eco = const, and derive the expressions for the co- and
cross-polar radiation patterns of both apertures. What is the relative cross-polar level of the
radiation pattern for θ = 0◦? What are the cross-polar levels at θ = 10◦ and θ = 20◦ in the
ϕ = 45◦ plane for the two cases, relative to the co-polar level in the same direction? What is
the axial ratio of the resulting elliptical polarization at the same angles?

4. Circular apertures in PEC and free space: Repeat exercise 7.1 for a circular aperture
of diameter d = 3λ and uniform co-polar aperture distribution.

5. Location of beam waist: Derive the formula for the beam waist Wmin and its location zmin

relative to an aperture with a given wavefront with center of curvature at z = −L.

6. Focussing of Gaussian beam: Consider a Gaussian plane wave (propagating in negative
z-direction) with 8.7 dB width D/2 which hits a parabolic reflector with focal length F . After
reflection from the paraboloid (located at z = 0) the Gaussian beam gets a wavefront curvature
1/F . Where would you expect the beam waist to be located? Compare this with the actual
expression for the location of the beam waist. How does the beam waist vary with F/D for a
large D? Calculate the beam waist when F = D = 10λ and when F = D = 20λ.

7. See the exercises about arrays of open waveguides and small aperture in Chapter 10.
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[7] H.E. Hernàndez-Figueroa, M. Zamboni-Rached, and E. Recami, Eds., Localized Waves. Hoboken, NJ:
Wiley-Interscience, 2008, Ch. 6.

[8] B.Z. Steinberg, E. Heyman, and L.B. Felsen, “Phase space methods for radiation from large apertures”,
Radio Science, Vol. 26, pp. 219–227, 1991.

[9] A. Shlivinski, E. Heyman, A. Boag, and C. Letrou, “A phase-space beam summation formulation for
ultrawideband radiation: A multiband scheme”, IEEE Transactions on Antennas and Propagation,
Vol. 52, No. 8, pp. 2042–2056, August 2005.

[10] A. Shlivinski, E. Heyman, and A. Boag, “A phase-space beam summation formulation for ultrawideband
radiation—Part II: A multiband scheme”, IEEE Transactions on Antennas and Propagation, Vol. 53,
No. 3, pp. 948–957, March 2005.

[11] A. Shlivinski, E. Heyman, and A. Boag, “A pulsed beam summation formulation for short pulse radiation
based on windowed radon transform (WRT) frames”, IEEE Transactions on Antennas and Propagation,
Vol. 53, No. 9, pp. 3030–3048, September 2005.

[12] J.M. Arnold, “Phase-space localization and discrete representation of wave fields”, Journal of The
Optical Society of America A, Vol. 12, No. 1, pp. 111–123, January 1995.

[13] H.-T. Chou, P.H. Pathak, and R.J. Burkholder, “Application of Gaussian-ray basis functions for the
rapid analysis of electromagnetic radiation from reflector antennas”, Microwaves, Antennas and Prop-
agation, IEE Proceedings, Vol. 150, pp. 177–183, 2003.

[14] H.-T. Chou and P.H. Pathak, “Uniform asymptotic solution for electromagnetic reflection and diffraction
of an arbitrary Gaussian beam by a smooth surface with an edge”, Radio Science, Vol. 32, No. 4,
pp. 1319–1336, July/August 1997.

[15] L.B. Felsen, “Complex-source-point solutions of the field equations and their relation to the propagation
and scattering of Gaussian beams”, Proc. Symp. Math, Vol. 18, pp. 39–56, 1975.

[16] Y. Dezhong, “Complex source representation of time harmonic radiation from a plane aperture”, IEEE
Transactions on Antennas and Propagation, Vol. 43, No. 7, pp. 720–723, July 1995.

[17] A. Polemi, G. Carluccio, M. Albani, A. Toccafondi, and S. Maci, “Incremental theory of diffraction for
complex point source illumination”, Radio Science, Vol. 42, 2007.

[18] Y.L. Chow, J.J. Yang, D.G. Fang, and G.E. Howard, “A closed form spatial Green function for the
microstrip substrate”, Microwave Theory and Techniques, IEEE Transactions on, Vol. 39, No. 3,
pp. 588–592, March 1991.

[19] J. He, T. Yu, N. Geng, and L. Carin, “Method of moments analysis of electromagnetic scattering from a
general three-dimensional dielectric target embedded in a multilayered medium”, Radio Science, Vol. 35,
No. 2, pp. 305–313, 2000.

[20] F. Vipiana, A. Polemi, S. Maci, and G. Vecchi, “A mesh-adapted closed-form regular kernel for 3D singu-
lar integral equations”, IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, pp. 1687–1698,
June 2008.

[21] Norris, A. N., and T. B. Hansen (1997), “Exact complex source representations of time-harmonic
radiation”, Wave Motion, 25, pp. 127–141.

[22] E. Martini, S. Maci, “A closed-form conversion from spherical-wave- to complex-point-source-
expansion”, Radio Science, Vol. 46, RS0E22, doi:10.1029/2011RS004665, 2011.

[23] S. Skokic, M. Casaletti, S Maci, S Sorensen, “Complex Conical Beams for Aperture Field Representa-

tions”, IEEE Transactions on Antennas and Propagation, ISSN: 0018-926X, No. 58, February 2011.



263 CHAPTER 8. HORN ANTENNAS

Chapter 8

Horn antennas

Horn antennas are often used at microwave frequencies. Their sidelobes and directivity can
be easily and accurately predicted. They often have low sidelobes and can have relative
bandwidths up to 1.8. Furthermore, they are normally easy to manufacture in small or
moderate sizes. However, if the frequency is low or the required directivity is large, they
become large and heavy compared to, e.g., reflector antennas. Horn antennas are commonly
used as standard gain horns and as feeds for reflector antennas. They find also application
as elements in array antennas. Some examples of horn antennas are shown in Fig. 8.1.

The horn antenna is easily fed from a rectangular, quadratic, or circular waveguide. It is
most often designed to have a straight flare from the waveguide opening to the aperture,
through which the modal field in the waveguide is transformed to the corresponding field
in the aperture. In this chapter we first explain the different methods used to analyze horn
antennas. Then, we study horns which are flared only in E-plane or H-plane, referred to
as E-plane and H-plane sector horns, respectively. Thereafter, we treat the pyramidal horn,
which is flared in both planes, and the conical horn with a circular aperture. We also describe
corrugated pyramidal and conical horns. In all cases we show how the aperture field can be
constructed from the appropriate waveguide mode.

E-plane sectoral horn H-plane Pyramidal Conical

Figure 8.1: Examples of horn antennas.
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Figure 8.2: Open waveguides.

8.1 Calculation methods

Here we describe the different analytical and numerical methods that are used to model horn
antennas. The first four approaches in Subsections 8.1.1 - 8.1.4 are based on approximat-
ing the aperture field by using the basic propagating mode inside the horn, and thereafter
using the PEC or Huygens equivalent to calculate the far-field function. The approach in
Subsection 8.1.5 is based on a numerical calculation of the aperture field using the mode
matching technique, and thereafter using the PEC or free space equivalent. This approach
can be refined with a Method of Moments (MoM) solution for the outer structure. Finally,
in Subsection 8.1.6 we describe how the Method of Moments can be used to calculate the
physical currents along the axial cross-section of the complete horn antenna when it is excited
from the input waveguide. It is also possible to design horn antennas by using other solution
methods for modeling the complete horn such as the Finite Element Method (FEM) or the
Finite Difference Time Domain technique (FDTD).

8.1.1 Cylindrical waveguide plane aperture approach

The simplest waveguide-fed antenna is just an open-ended waveguide (Fig. 8.2). This may be
analyzed by assuming that the aperture field is given by the fields of the excited single mode
propagating in the waveguide. For waveguides with rectangular and circular cross-sections
these modal fields can be found in textbooks on field theory. When the E-and H-fields in
the aperture have been found, we can use the PEC or free space equivalents. The Huygens
equivalent cannot be used, because the aperture impedance will be very different from the
free space impedance due to the small aperture width. The free space equivalent will not
be accurate either, because the currents induced on the outer waveguide walls contribute
significantly to the radiation, and these currents are neglected in the free space equivalent.
The PEC equivalent is accurately and easily applied if the aperture resides in a large ground
plane.
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P

Figure 8.3: Sector horn antenna with circular cylindrical aperture surface.

Figure 8.4: The conical horn antenna (left) and the spherical sector horn antenna (right).

8.1.2 Radial cylindrical waveguide approach

There exist analytical modal solutions for the fields in sector waveguides. They are expressed
in terms of cylindrical waves propagating in the radial direction and can be found in textbooks
on field theory. The fields of the basic mode can be used to approximate the aperture field
of sector horn antennas (Fig. 8.3). The approximation is acceptable if the two broad walls of
the sector horns have a curved circular rim at the aperture which center of curvature P is in
the apex of the sector. The free space equivalent should be used.

8.1.3 Conical and spherical sector waveguide approach

There exist also analytical solutions for the modal fields in conical and spherical waveguides.
The conical waveguide has a rotationally symmetric wall which coincides with a θ-cone in
a coordinate system which is located with its z-axis along the symmetry axis and its origin
in the apex of the cone formed by the walls. The spherical waveguide has four walls which
coincide with two θ-cones and two ϕ-planes in a coordinate system which is located with the
xy-plane cutting through the center of the horn between the two conical walls. The modes
of both structures can be expressed in terms of spherical wave functions, and they can be
used to approximate the aperture field of both conical horn antennas and spherical sector
horn antennas (Fig. 8.4). The resulting aperture field and the Huygens equivalent give quite
accurate results, in particular when a spherical aperture surface is used.
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8.1.4 Flared cylindrical waveguide approach

The horn geometries in Subsections 8.1.2 and 8.1.3 can also be analyzed by approximating
the aperture field distribution over the cylindrical or spherical aperture surface, in a way
that it becomes equal to that of a corresponding cylindrical waveguide over its flat aperture
surface. This waveguide must have the same rectangular or circular cross-section as the rim
of the actual aperture. This approximation is quite good for horns with small flare angles.
Once the approximate aperture field has been found, the Huygens equivalent can be used.
The advantage of the flared cylindrical waveguide approach is that the analytic form of the
aperture field is much simpler than the spherical wave forms otherwise needed. In the latter
case we may even need to use the wave functions of non-integer order, which are normally
not included in mathematical software libraries for special functions.

The cylindrical or spherical aperture surface can even be approximated by a plane surface
if the aperture field is projected on it by using the paraxial approximation. In this way
the spherical phase-front becomes a quadratic phase variation over the plane aperture. The
advantage of this approach is that it is possible to solve the radiation integral analytically.
This approach is quite accurate for small flare angles, but the resulting analytic expressions
for the far-field function are so complex that they hardly present any improvement compared
to a numerical solution of the original radiation integral. We will still use this approach in
Sections 8.2 to 8.8 in combination with numerical integration because it makes it possible
to obtain and plot universal radiation patterns which can easily be scaled to different horn
dimensions.

8.1.5 Mode matching approach

It is nowadays very common to analyze flared horns with rectangular and circular cross-
sections by using mode matching. By this approach the geometry along the whole length of
the horn is divided in cascaded sections of cylindrical waveguides of circular or rectangular
cross-sections. The cross-section of each section is determined by the actual cross-sectional
shape of the horn, and the length of each section must be small enough to model the actual
profile with sufficient accuracy (Fig. 8.5). The field within each rectangular or circular section
is expressed as a finite series of rectangular or circular cylindrical waveguide modes with
initially unknown coefficients. The coefficients are determined by matching the fields at each
interface. This is done successively from the aperture to the feed waveguide where a given
basic waveguide mode excites the horn. The radiating horn aperture can be analyzed by using
a free space equivalent for each mode in the waveguide section closest to the aperture.

The mode matching approach is known to be extremely accurate both for the return loss
and the radiation pattern. If it is combined with an accurate Method of Moments solution of
the exterior horn structure by using the PEC equivalent, the radiation pattern will be very
accurate also in the backward direction.

The whole rim of the horn needs to be located in a plane coinciding with the virtual wall of the
last cascaded section. The mode matching approach is well suited for analyzing corrugated
conical or pyramidal horns. The calculations need to be carefully checked with respect to
convergence by increasing the number of cascaded sections and the number of modes in each
section. In particular, many modes are needed if the flare angle is large.
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Figure 8.5: Modeling a conical (left) and pyramidal (right) horn by cascaded circular and rectangular
cylindrical waveguide sections, respectively.
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Figure 8.6: Segmentation of the outer and inner cross-section of a rotationally symmetric horn
antenna for solution by the Method of Moments.

8.1.6 Method of Moments approach

A complete numerical model of a horn can also be obtained by exciting it with an infinitesimal
dipole inside the waveguide and calculating the induced currents on the whole surrounding
structure by the Method of Moments (MoM), see Fig. 8.6. This is feasible for rotationally
symmetric horn antennas with BOR0 or BOR1 excitations, as MoM software for Bodies of
Revolution (BOR) is available (Fig. 8.7). The computation time is long and the storage
requirement is large, so the approach is most suitable for small horns. In this approach there
are problems with unphysical field resonances at specific frequencies, which cause unreliable
results. These problems are most severe for large horn antennas. However, it is not difficult
to filter out the invalid results from the usable ones.

Rectangular horn antennas can also be modelled by a complete MoM approach, using soft-
ware for three-dimensional structures (3D). This approach is even more time-consuming than
the BOR MoM approach. Nevertheless, it has been used and plausible results have been re-
ported.



8.2. E-PLANE SECTOR HORN 268

Figure 8.7: The E-plane sector horn antenna with cylindrical aperture (left) and with plane aperture
(right). The direction of the E-field lines is marked.
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Figure 8.8: Geometry of E-plane sector horn.

8.2 E-plane sector horn

The E-plane sector horn is shown in Figs. 8.7 and 8.8. It is excited by a rectangular waveguide
with a TE10 mode. The width in H-plane is the same as the waveguide width a, and the
aperture width in E-plane is b with flare angle α

E
. The rim of the horn may be straight so

that the aperture surface becomes plane. Alternatively, the rim of the two broad walls may
be curved to follow the cylindrical wavefront at the opening of the horn as shown to the left
in Fig. 8.7.

8.2.1 Flared cylindrical waveguide approach

In order to find the radiation field we must assume a known aperture field. We may approx-
imate it by using the flared cylindrical waveguide approach described in Subsection 8.1.4,
i.e., as a TE10 rectangular waveguide mode with a cylindrical phase-front. This is done as
follows. Inside a rectangular waveguide the TE10 mode has the transverse field distribution

Ew(x′, y′) = E
0

cos(πx′/a)ŷ for |x′| < a/2 , |y′| < b/2 . (8.1)

In the sector waveguide formed by the horn, the wavefront will be cylindrical rather than
plane. Then, we may assume the same field distribution over the cylindrical wavefront, with
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y′ replaced by the path length l′ = αyLy for αy ≤ αE , where tanαE = b/(2Ly) with Ly the
radius of curvature of the cylindrical wavefront in the aperture, i.e., the flare length of the
horn. Furthermore, the field in the sector waveguide will have to decay according to 1/

√
Ry

away from the apex in order to conserve the power, where Ry =
√
y′y′ + (z′ + Ly)(z′ + Ly),

and z′ = −Ly is the location of the apex. Thus, the field in the sector waveguide can be
approximated by

E(x′, αy, z
′) = E

0
cos(πx′/a)[e−jkRy/

√
Ry]α̂y for |x′| < a/2 , |αy| < α

E
, (8.2)

with

α̂y = cosαyŷ− sinαyẑ , αy = arctan(y′/Ly) .

The field in the cylindrical aperture defined by Ry = Ly becomes

Ea(x′, α) = E′
0

cos(πx′/a)α̂y for |x′| < a/2 , |αy| < α
E
, (8.3)

with E′
0

= E0e
−jkLy/

√
Ly. The cylindrical aperture surface is described by Ry = Ly or

equivalently by the coordinate vector

ra = x′x̂ + y′ŷ + (
√
L2
y − (y′)2 − Ly)ẑ

= x′x̂ + Ly sinαyŷ + Ly(cosαy − 1)ẑ ,

when the origin of the coordinate system is taken to be in the center of the aperture. The
surface normal is seen to be n̂a = sinαyŷ + cosαy ẑ. We can now use the Huygens free space
equivalent as described in Section 7.2.1. By using (7.6) and (7.7) with (8.3), the far-field
function becomes

G(r) = −
∫ α

E

−α
E

∫ a/2

−a/2
E′

0
cos(πx′/a)G

H
(α̂y, n̂a, r̂)ejkra·r̂dx′Lydαy , (8.4)

where

G
H

(α̂y, n̂a, r̂) = Ck[α̂y − (α̂y · r̂)r̂− (α̂y × n̂a)× r̂] (8.5)

is the far-field function of a unit Huygens source. This integral can be evaluated accurately
by numerical integration.

8.2.2 Paraxial approximation for plane aperture field

Sometimes we would want to perform the integration over the plane projection of the cylin-
drical aperture, as explained before in Section 8.1.4. The field in this plane aperture is
obtained by using (8.2) with z′ = 0 and Ry =

√
y′y′ + LyLy. We can simplify the expression

by assuming that α� 1 and using the paraxial approximation for which

Ry =
√
y′2 + L2

y ≈ Ly and n̂a = ẑ (8.6)

in amplitude expressions, and

Ry =
√
L2
y + y′2 ≈ Ly + y′2/(2Ly) (8.7)
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Figure 8.9: ?Radiation patterns of an E-plane sector horn for a = 0.5λ, b = 2.75λ and Ly = 6λ. (a)
E- and H-plane patterns. (b) Contour plot.
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Figure 8.10: ?Universal E-plane patterns for E-plane sector horn.

in phase expressions. This gives

E(x′, y′) ≈ E′
0

cos(πx′/a)e−jky
′2/(2Ly)ŷ for |x′| < a/2 , |y′| < b/2 , (8.8)

with E′
0

= E
0
e−jkLy/

√
Ly .

The latter is a constant which we may choose arbitrarily, e.g., E′
0

= 1.

We can now use the theory presented in Section 7.3.2, for the plane free space apertures, and
equation (7.21) to get the far-field function

G(θ, ϕ) = −2Ck cos2(θ/2)[sinϕθ̂ + cosϕϕ̂]Ã(k sin θ cosϕ)B̃(k sin θ sinϕ) , (8.9)

where

Ã(kx) =

∫ a/2

−a/2
cos(πx′/a)ejkxx

′
dx′ = −2πa cos(kxa/2)

(kxa)2 − π2
(8.10)

B̃(ky) =

∫ b/2

−b/2
e−jky

′2/(2Ly)ejkyy
′
dy′ (8.11)

and kx = k sin θ cosϕ, ky = k sin θ sinϕ. We can transform (8.11) to a universal integral by
introducing u = 2y′/b and the maximum phase variation over the aperture

Φmax = k(b/2)2/(2Ly) = kb2/(8Ly) .

Then,

B̃(ky) = F (ky, b,Φmax) =
b

2

∫ 1

−1

e−ju
2Φmaxejkybu/2du . (8.12)
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Figure 8.11: Geometry of H-plane sector horn.

The analytic solution of (8.10) can be found in integral handbooks. The integral in (8.12)
is most conveniently evaluated numerically. An analytic solution is also available, but it is
so complicated that it cannot provide any extra physical insight. Therefore, the numerical
evaluation of (8.12) is chosen herein.

8.2.3 Radiation patterns

The radiation patterns in the E- and H-planes for an example of an E-plane sector horn
is shown in Fig. 8.9. The first sidelobes of the E-plane have grown into the main beam to
form undesirable shoulders. The shoulders will reduce to sidelobes about 13.2 dB less the
main beam level when Ly increases. This is due to the uniform aperture illumination in
E-plane. The universal E-plane pattern represented by B̃(ky) is plotted in Fig. 8.10 as a
function of b sin θ/λ for different choices of the maximum phase error Φmax

1. The actual
E-plane pattern is obtained by multiplying the values in Fig. 8.9 with the Huygens source
pattern cos2(θ/2). The E-plane sector horn is rarely used due to the high shoulders and
sidelobes in E-plane.

8.3 H-plane sector horn

The H-plane sector horn is shown in Fig. 8.11. This is also fed by a TE10 rectangular waveg-
uide mode. The H-plane cross-section is flared with an angle α

H
, and the E-plane width is

equal to the waveguide height b.

8.3.1 Flared cylindrical waveguide approach

Following the flared cylindrical waveguide approach and using the same arguments as in
Subsection 8.2.1, we now get an approximate cylindrical wave in the sector guide of the form

1 There exist Matlab code for all figures of which the caption start with ?.
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E(αx, y
′, z′) = E

0
cos(παx/(2αH ))[e−jkRx/

√
Rx]ŷ (8.13)

for |αx| ≤ αH , |y′| < b/2, with,

αx = arctan(x′/Lx) and Rx =
√

(x′)2 + (z′ + Lx)2 .

The aperture surface is described by

ra = x′x̂ + y′ŷ +
(√

L2
x + x′2 − Lx

)
ẑ

= Lx sinαxx̂ + y′ŷ + Lx(cosαx − 1)ẑ ,

with the surface normal vector n̂a = sinαxx̂ + cosαxẑ. The far-field function is found in the
same way as in Subsection 8.2.1 to be

G(r̂) = −
∫ α

H

−α
H

∫ b/2

−b/2
E′

0
cos

(
παx
2α

H

)
G
H

(ŷa, n̂a, r̂)ejkra·r̂dy′Lxdαx , (8.14)

with
G
H

(ŷ, n̂a, r̂) = Ck[ŷ− (ŷ · r̂)r̂− (ŷ× n̂a)r̂] (8.15)

being the radiation field of the unit y-polarized Huygens source. We can accurately evalu-
ate (8.14) with (8.15) by numerical integration, but we will as well proceed with the paraxial
approximation in order to get the radiation integral in a universal form.

8.3.2 Paraxial approximation for plane aperture field

Using the paraxial approximation we get the following aperture field, in the same way as in
Subsection 8.2.2,

Ea(x′, y′) = E′
0

cos(πx′/a)e−jkx
′2/(2Lx)ŷ (8.16)

for |x′| < a/2 and |y′| < b/2. The far-field function becomes

G(θ, ϕ) = −2Ck cos2(θ/2)[sinϕθ̂ + cosϕϕ̂]Ã(k sin θ cosϕ)B̃(k sin θ sinϕ) , (8.17)

Ã(kx) =

∫ a/2

−a/2
cos(πx′/a)e−jkx

′2/(2Lx)ejkxx
′
dx′ , (8.18)

B̃(ky) =

∫ b/2

−b/2
ejkyy

′
dy′ = b

sin(kyb/2)

kyb/2
. (8.19)

We can transform (8.18) to a universal integral by introducing u = 2x′/a and the maximum
phase variation Φmax over the aperture:

Φmax = k(a/2)2/(2Lx) = ka2/(8Lx) . (8.20)

Then,

Ã(kx) = F (kx, a,Φmax) =
a

2

∫ 1

−1

cos(πu/2)e−ju
2Φmaxejkxau/2du . (8.21)

This Fourier transform can be evaluated numerically and general results be presented as a
function of a sin θ/λ for certain choices of the maximum phase variation Φmax. Eq. (8.21) can
even be evaluated analytically, but the solution has a very complicated form, so we will not
present it here. It is most conveniently evaluated numerically.
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Figure 8.12: ?Radiation patterns of an H-plane sector horn for a = 5.5λ, b = 0.25λ and Lx = 6λ.
(a) E- and H-plane patterns. (b) Contour plot.
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Figure 8.13: ?Universal H-plane patterns for H-plane sector and pyramidal horns.

8.3.3 Radiation patterns

The E- and H-plane radiation patterns of an example of a H-plane sector horn are shown
in Fig. 8.12?. We see that there are no sidelobes and shoulders. For larger horns there will
be sidelobes in H-plane, but the highest first lobe will always be more than 22 dB below the
main beam maximum. The universal H-plane pattern based on (8.21) is shown in Fig. 8.13
with Φmax as parameter?. This must be multiplied with the Huygens source pattern cos2(θ/2)

in order to be complete. We see that the sidelobes are less than those for the E-plane sector
horn. The E-plane pattern in Fig. 8.12 is very similar to the H-plane pattern in Fig. 8.9 even
though the aperture distributions are different. The reason is that the aperture diameters
in the two planes are so small that the dominant contribution to the shapes of the radiation
patterns are the Huygens factor cos2(θ/2) which is the same in both cases.

8.4 Pyramidal horn

The pyramidal horn is shown in Fig. 8.14. It is flared both in the E- and H-planes, and the
flare angles and the apexes of the flares may generally be different in the two planes. If the
apexes coincide we may assume a propagating spherical mode inside the horn. Under the
same approximation as used in Sections 8.2 and 8.3 this may be expressed by

E(x′, y′, z′) = E′
0

cos

(
παx
2α

H

)
1

R
e−jkRα̂y (8.22)

for |αx| < αH and |αy| < αE , with

R =
√
x′2 + y′2 + (z′ + L)2 .
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Figure 8.14: Geometry of pyramidal horn.

The spherical aperture is described by

ra(x′, y′) = x′x̂ + y′ŷ + (
√
L2 − x′2 − y′2 − L)ẑ

= L sinαxx̂ + L sinαyŷ + (L
√

1− sin2 αx − sin2 αy − L)ẑ ,

with the surface normal vector n̂a = sinαxx̂+sinαyŷ+
√

1− sin2 αx − sin2 αy ẑ. In the same way
as before the far-field function becomes, but now by integration over the spherical phase-front
in the aperture,

G(r̂) = −
∫ α

H

−α
H

∫ α
E

−α
E

E′
0

cos

(
παx
2α

H

)
G
H

(α̂y, n̂a, r̂)ejkra·r̂L2dαxdαy , (8.23)

with GH the same as in (8.5) and n̂a = sinαxx̂ + sinαyŷ + cosαx cosαy ẑ, the normal vector to
the doubly curved aperture surface.

We get now in the same way as in Subsections 8.2.1 and 8.3.1 by using the paraxial approxi-
mation the following aperture field

Ea(x′, y′) = E′
0

cos(πx′/a)e−jk[x′2+y′2]/(2L)ŷ (8.24)

for |x′| < a/2 and |y′| < b/2 where L is the distance from the aperture plane to the apex of the
horn. We can generalize this to different apex locations Lx and Ly for the xz- and yz-planes
of the horn as follows

Ea(x′, y′) = E′
0

cos(πx′/a)e−jk[x′2/(2Lx)+y′2/(2Ly)]ŷ (8.25)

for |x′| < a/2 and |y′| < b/2. Further, in the same way as before, we obtain the far-field
function

G(r̂) = −2Ck cos2(θ/2)[sinϕθ̂ + cosϕϕ̂]Ã(k sin θ cosϕ)B̃(k sin θ sinϕ) , (8.26)

with Ã(kx) the same as in (8.18) and B̃(kx) the same as in (8.11). This means that the E-plane
pattern is equal to that of the E-plane sector horn, and the H-plane pattern is equal to that of
the H-plane sector horn. Therefore, the universal E- and H-plane patterns in Fig. 8.9 and 8.13
apply also to the pyramidal horn. These two universal patterns are for φmax = 90◦ combined
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Figure 8.15: ?Universal contour radiation pattern of a pyramidal horn when the maximum phase
variation over the aperture is 90◦ in both planes. 5 dB contours down to −45 dB.

to a universal contour plot in Fig. 8.15?. We see that the highest sidelobes appear in the
two principal planes, which we already know from the treatment of rectangular apertures in
Section 7.4.

There exists also a Matlab code for calculation of the directivity of a pyramidal horn antenna
with given dimensions of the feed waveguide and the aperture. Pyramidal horns are often
used as standard gain horns.

8.5 Corrugated surfaces

We have seen in Sections 8.2, 8.3 and 8.4 that the E-plane radiation patterns of horn antennas
have high sidelobes or shoulders in the main beam. This is undesirable, and we shall discuss
how this can be improved by corrugating the E-plane walls of the horn (i.e., the walls that
are parallel with the H-field and normal to the E-field in the aperture).

Fig. 8.16 shows the cross-section of a surface which is corrugated with grooves orthogonal to
the plane of incidence. We explain below how this surface behaves for plane wave incidence.
The coordinate system used in the explanations are given in Fig. 8.16.

8.5.1 Principle of operation in H-plane

First we consider the polarization for which the E-field is orthogonal to the plane of incidence
(Fig. 8.16a). This corresponds to the H-plane in antennas with two planes of symmetry. The
E-field is parallel with the grooves and the ridges. If the grooves are narrower than λ/2, the
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Figure 8.16: Cross-section of corrugated surface and its coordinate system.

E-field cannot penetrate into the grooves because the corresponding parallel plate waveguide
formed by the walls in each groove has a cut-off frequency when the groove width is w = λ/2.
Therefore, the E-field will instead be short-circuited by the ridges to become zero at the
surface, as for a smooth PEC. The induced electric current at the surface will be J = x̂×H

(from (4.14)) where H is the total H-field. We consider the H-plane, so the y-component
of H is zero. Therefore, J will have a y-component only, and this can float in the surface
along the ridges without being effected by the grooves. So, the corrugated surface works as
a smooth PEC in H-plane.

8.5.2 Principle of operation in E-plane

In the E-plane the E-field has no y-component, and the H-field is oriented in y-direction and
has a non-zero value at the surface (Fig. 8.16b). The induced current J = x̂ × H will be
z-directed and will try to float down into the grooves. For this polarization the parallel plate
waveguide formed by the grooves has no cut-off, so the short-circuits at the bottom of the
grooves will be transformed to open-circuited lines at the surface if the groove depth d = λ/4.
Therefore, the z-directed current will have to be zero at the surface, and this in turn means
that the corresponding y-component of the H-field will be zero, so the corrugations have
created an artificial magnetic conducting surface in E-plane. From studying the parallel-
plate transmission line formed by the grooves, when the groove depth d is different from λ/4,
we can show that the ratio between Ez and Hy averaged over the surface becomes

Zz = −Ez/Hy = j

(
w

p

)
η tan(kgd) , (8.27)

where η is the wave impedance inside the corrugations (most often free space), and kg is
the guide wavenumber in the corrugations for propagation in the direction normal to the
corrugated interface (for straight air-filled corrugations in a plane surface kg = k). Eq. (8.27)
is valid when the corrugation period is p < 0.5λ, preferable p < 0.25λ. The condition p < 0.5λ

is also necessary in order to avoid grating-lobes and multiple beams at the surface. The
relation in (8.27) is commonly referred to as the surface impedance.
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Figure 8.17: A transversely corrugated soft surface (left) and its PEC/PMC strip model (right).

8.5.3 Impedance boundary condition

We may replace the corrugated surface by a thin sheet of equivalent electric and magnetic
surface currents and a null-field region behind it. From the discussion in Subsection 8.5.2
and from (4.12) the boundary condition in E-plane at this surface becomes

(x̂×E)y = −My , (8.28)

(x̂×H)z = (x̂×Hy) · ẑ = Jz = My/Zz , (8.29)

where My is the induced equivalent magnetic current and Jz = My/Zz is the induced electric
current at the surface. In H-plane we have

(x̂×E)z = 0 , (8.30)

(x̂×H)y = Jy , (8.31)

where Jy is the induced electric current floating along the corrugation ridges. The surface
impedance is infinite when kgd = π/2, i.e., d = λg/4, so then,

(x̂×H)z = Hy = 0 , (8.32)

(x̂×E)z = Ey = 0 , (8.33)

which corresponds to the boundary condition at a surface made of parallel thin strips of PEC

and PMC oriented in y-direction (Fig. 8.17).

The impedance boundary conditions in (8.28) - (8.31) and (8.32) - (8.33) can be used for
accurate analysis of wave propagation along corrugated surfaces, provided wave propagation
is orthogonal to the corrugations, i.e., in y-direction in Fig. 8.16. When the wave propagation
has a component along the direction of the corrugations, the impedance boundary condition
is not accurate.

8.5.4 Corrugations as soft surface

There are some nearly equivalent boundary conditions that are easier to use than the impe-
dance boundary condition for constructing approximate field solutions and for interpreting
field behavior. They are the soft and hard boundary conditions introduced in Section 4.1.4.
By using Maxwell’s equations it is possible to show that Hy = 0 in (8.32) corresponds to
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Ex = 0. Therefore, by using also (8.33) we see that the transversely corrugated surface is soft
regardless of polarisation because

Ey = Ex = 0 (8.34)

and for this reason we refer to it as a soft surface. It is also possible, yet much more
complicated, to realize polarization independent hard surfaces by means of corrugations [1].
Different realizations of soft surfaces and their bandwidth are summarized in [2].

8.5.5 Bandwidth and surface waves

The transversely corrugated soft surface is known to have a wide bandwidth. This means
that if it is long enough, the vertical x-component of the E-field will be zero or close to zero
at the surface even if the surface impedance is not infinity. The usable bandwidth is within
the range where

π/2 < kgd < π ,

which for air-filled straight corrugations means that

λ/4 < d < λ/2 .

This corresponds to a relative bandwidth of 2 : 1. In practice the usable relative bandwidth is
smaller, but can be up to 1.8. The best soft E-plane performance is obtained when kgd = π/2

or d ≈ λ/4.

The corrugated soft surface does not work when the corrugations are shallower than λ/4,
because then surface wave solutions may exist. Surface waves are waves propagating along
the surface with an exponential decay normal to it. These waves destroy the soft boundary
condition completely. The same types of surface waves may be present when

λ/2 < d < 3λ/4 .

In practice, the depth may be a bit shallower than λ/4 and still give the soft boundary
condition.

8.6 Corrugated pyramidal horn

This horn is similar to the pyramidal horn with smooth PEC walls, except that the two
E-plane walls are corrugated to obtain a polarization independent soft surface as explained
in Section 8.5. We can construct the aperture field by using the facts that Ey = 0 at the
smooth PEC walls, and Ey = Ex = 0 at the corrugated soft surface wall. For y-polarization
this gives a field solution inside the rectangular waveguide of the form

Ew(x′, y′) = cos(πx′/a) cos(πy′/b)ŷ . (8.35)

To an acceptable approximation the same field solution will also be present inside a rect-
angular waveguide with all four walls corrugated. The advantage of corrugating all walls is
that the desired cos(πx′/a) cos(πy′/b) aperture distribution is obtained for any polarization



281 CHAPTER 8. HORN ANTENNAS

x
^

y
^

z
^

a

w p

b/2

b/2

d

αE

b

y
^

z
^

Figure 8.18: Example of corrugated pyramidal horn and its cross section.

of the fields within the waveguide. If we now use the same assumptions as for the previous
rectangular horn cases, we may construct the aperture field to be

E(x′, y′) = cos(πx′/a) cos(πy′/b)e−jk[x′2/(2Lx)+y′2/(2Ly)]ŷ . (8.36)

If the corrugations are straight as shown in Fig. 8.18, the flare angle α in H-planes, must be
very small in order to avoid generation of higher order modes in the horn. This can be avoided
by curving the corrugations to follow the shape of the wavefronts inside the horn.

The two aperture integrals are obtained in the same way as before. We achieve the same
type of universal radiation pattern in both E- and H-planes, i.e., the nice universal H-plane
pattern in Fig. 8.13. The grooves do not need to make an angle of 90◦ to the surface, but
they have a larger bandwidth if they do.

8.7 Smooth conical horn

The conical horn is shown in Fig. 8.19. It is rotationally symmetric with flare angle α. We
will construct the aperture field by using the flared cylindrical waveguide approach like we
did in Sections 8.2 and 8.3. We only consider BOR1 excitation by a TE11 circular cylindrical
waveguide mode.

The field solution of this mode can be found in text books on elementary field theory. For
linear y-polarization (see Eq. (7.44)) it is

E
E

= Eρ =
1

ρ′
J

1
(κ

1
ρ′/a) sinϕ′ , (8.37)
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Figure 8.19: Cross section of conical horn antenna.

E
H

= Eϕ =
∂

∂ρ′
[J1(κ1ρ

′/a)] cosϕ′

=

[
−κ1

a
J

2
(κ

1
ρ′/a) +

1

ρ′
J

1
(κ

1
ρ′/a)

]
cosϕ′

(8.38)

for ρ′ ≤ a, where κ1 = 1.841, J1 is the Bessel function of first kind and first order, and J2 is
the Bessel function of first kind and second order. κ1 is determined from the requirement
Eϕ = 0 at ρ = a. We can now use the BOR1 relations in Section 7.5 to express this as

Eay (ρ′, ϕ′) = Eco45◦ (ρ′)− Exp45◦ (ρ′) cos(2ϕ′) , (8.39)

Eax(ρ′, ϕ′) = Exp45◦ (ρ′) sin(2ϕ′) , (8.40)

where

Eco45◦ (ρ′) =

[
1

ρ′
J

1
(κ

1
ρ′/a) +

κ1

2a
J

2
(κ

1
ρ′/a)

]
=
κ1

2a
J

0
(κ

1
ρ′/a) , (8.41)

Exp45◦ (ρ′) =
κ1

2a
J2(κ1ρ

′/a) , (8.42)

in which J0 is the zeroth order Bessel function of the first kind.

We can now use the same approach as in Section 8.2 to construct the aperture field on the
spherical surface with the center of curvature in the apex of the horn. Doing this we arrive
at

Ea(θ′, ϕ′) = Eay (θ′, ϕ′)ĉo(θ′, ϕ′) + Eax(θ′, ϕ′)x̂p(θ′, ϕ′) (8.43)

where Eay (θ′, ϕ′) = Eco45◦ (θ′)− Exp45◦ (θ′) cos(2ϕ′) , (8.44)

Eax(θ′, ϕ′) = Exp45◦ (θ′) sin(2ϕ′) , (8.45)

with Eco45◦ (θ′) = J
0
(κ

1
θ′/α) , (8.46)

Exp45◦ (θ′) = J
2
(κ

1
θ′/α) , (8.47)

for θ′ ≤ α where θ′ is in radians. Here we have omitted the constant (κ1/2a) and have
used the co- and cross-polar unit vectors defined by (2.55) - (2.56) in Section 2.3.5. The
far-field function is obtained by using (7.7) in Section 7.2.1 over the spherical cap, with
ηJa = −Ea(θ′, ϕ′).

We can transform the field to the plane aperture by using the paraxial approximation. In the
same way as before this yields

Ea(ρ′, ϕ′) = [Eay (ρ′, ϕ′)ŷ + Eax(ρ′, ϕ′)x̂]e−jkρ
′2/(2L) , (8.48)

with Eay (ρ′, ϕ′) = Eco45◦ (ρ′)− Exp45◦ (ρ′) cos(2ϕ′) , (8.49)
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Figure 8.20: ?Co- and cross-polar aperture-field and radiation patterns of a smooth conical horn.
(a) Contour plot of aperture field. (b) Universal radiation patterns in 45◦-plane. The parameter
is the maximum phase variation φmax over the aperture. (c) Contour plots of universal radiation
pattern for φmax = 90◦.
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Eax(ρ′, ϕ′) = Exp45◦ (ρ′) sin(2ϕ′) , (8.50)

where Eco45◦ (ρ′) = J
0
(κ

1
ρ′/a) , (8.51)

Exp45◦ (ρ′) = J
2
(κ

1
ρ′/a) . (8.52)

We have now a plane aperture and we can use the results in (7.53) to (7.56) in Subsec-
tion 7.5.1. Doing so, we obtain

G(r̂) =2Ck cos2(θ/2) · {[Ẽco45◦ (θ)− Ẽxp45◦ (θ) cos 2ϕ]ĉo + Ẽxp45◦ (θ) sin 2ϕx̂p} (8.53)

with ĉo and x̂p given by (2.55) and (2.56) and

Ẽco45◦ (θ) = 2π

∫ a

0

J
0
(κ

1
ρ′/a)e−jkρ

′2/(2L)J
0
(kρ′ sin θ)ρ′dρ′ , (8.54)

Ẽxp45◦ (θ) = −2π

∫ a

0

J2(κ1ρ
′/a)e−jkρ

′2/(2L)J2(kρ′ sin θ)ρ′dρ′ . (8.55)

Universal patterns are obtained by substituting u = ρ′/a and Φmax = ka2/(2L), the maximum
phase variation over the aperture. This gives

Ẽco45◦ (θ) = 2πa2

∫ 1

0

J0(κ1u)e−jΦmaxu
2

J0(kau sin θ)udu , (8.56)

Ẽxp45◦ (θ) = −2πa2

∫ 1

0

J
2
(κ

1
u)e−jΦmaxu

2

J
2
(kau sin θ)udu . (8.57)

The universal radiation patterns in the 45◦-plane as given in (8.56) and (8.57) are shown in
Fig. 8.20(b)?, and the uv-contour plot of it in Fig. 8.20(c)?. The far-field function must in
this case be multiplied by cos2(θ/2) in order to get the correct pattern including the Huygens
source. But this represents a minor correction in the vicinity of the main beam (for large
horns with narrow beams). We see that the cross-polar sidelobe in the 45◦-plane is very
large and that the main beam gets a shoulder or a dip in the center for large phase errors.
Therefore, conical horns with smooth walls are most often designed with phase variations
φmax smaller than 45◦. The cross-polar sidelobe can be reduced and the performance for
large φmax improved by means of corrugations, as described in the next section. Similar
performance as with a corrugated horn, but over a much more limited bandwidth, can be
obtained by using a dual mode horn (having smooth walls as well) [3]. This is a horn which
is designed to contain both the TE11 and TM11 cylindrical waveguide modes in the aperture,
including the quadratic phase.

8.8 Corrugated soft conical horn

The conical horn antenna has a high cross-polar sidelobe in the 45◦-plane corresponding to
differences in the E- and H-plane radiation patterns. The reason for this is that the metal
cone is a PEC which has a soft boundary condition in H-plane and a hard boundary condition
in E-plane. We know from Sections 8.5 and 8.6, that this can be improved by providing the
horn with corrugated walls as shown in Fig. 8.21. The field distribution inside a corrugated
circular waveguide, when the frequency is within the range where the corrugation represent
a soft surface, can be found to be approximately

E(ρ′) = J
0
(κ

01
ρ′/a)ŷ , (8.58)
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Figure 8.21: Cross section of example of conical corrugated horn antenna.

where κ01 = 2.405 is the value of x for the first null of J0(x). This aperture distribution
is rotationally symmetric, zero at the rim, and there is no cross-polarization as shown in
Fig. 8.22(a). These characteristics are due to the soft surface created by the corrugations.
We can now use this to find an approximate aperture distribution for the conical corrugated
horn by using the same procedure and paraxial approximation as in Section 8.7. The result
is

E(ρ′) = J
0
(κ

01
ρ′/a)e−jkρ

′2/(2L)ŷ , (8.59)

where L is the length of the flare of the horn measured from the apex. The far-field function
is obtained by using (8.53) with Exp45◦ (θ) = 0 and

Ẽco45◦ (θ) = 2π

∫ a

0

J
0
(κ

01
ρ′/a)e−jkρ

′2
1
/(2L)J

0
(kρ′ sin θ)ρ′dρ′ . (8.60)

This is almost the same formula as for the co-polar pattern of the smooth conical horn, but
κ

01
in (8.60) is different from κ

1
in the smooth horn formula.

The universal pattern is obtained by substituting u = ρ′/a and Φmax = ka2/(2L) the maximum
phase variation over the aperture. Then,

Ẽco45◦ (θ) = 2πa2

∫ 1

0

J0(κ01u)e−jΦmaxu
2

J0(kau sin θ)udu . (8.61)

This is plotted in Fig. 8.22(b) and 8.22(c)?. We see that the sidelobes are lower than for the
smooth wall horn (in Fig. 8.20), and they vanish when the phase variation over the aperture
increases. In the present simplified theory the cross-polar sidelobes vanish. In practice, there
will always be cross-polar sidelobes present, but in most designs they are more than 30 dB

smaller than the main beam maximum.

It is important to note that the field distribution in (8.59) is an approximation. The actual
propagating mode in the horn is a hybrid mode consisting of both a TE10 and a TM10 part
which both have to be present in order to satisfy the boundary conditions at the corrugated
wall. However, at the frequency for which kgd = π/2, the hybrid mode has the approximate
field distribution in (8.59) with zero cross-polarization, which is referred to as a balanced
hybrid HE11 mode. This balanced field distribution is approximately valid for the co-polar
radiation field over the whole interval for which π/2 < kgd < 0.9 1

4
, whereas the cross-polar

fields changes over this band.
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Figure 8.22: ?Co- and cross-polar aperture-fields and radiation patterns of conical corrugated (soft)
horn antenna. (a) Contour plot of aperture field. (b) Universal radiation patterns in 45◦-plane. The
parameter is the maximum phase variation φmax over the aperture. (c) Contour plots of universal
radiation pattern for φmax = 90◦. The cross-polar level is vanishing with this simplified theoretical
model, and it can in practice also be below −30 dB over significant bandwidth.
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Figure 8.23: Corrugated conical horn antenna with far-field phase center zpc.

8.9 Modeling corrugated horn with Gaussian beams

The corrugated horn has a radiation pattern which has an approximate Gaussian shape. This
may be used to obtain some general design curves that are very convenient to use for initial
horn designs. These are based on the Gaussian beam formulas in Section 7.6 and will be
formulated in terms of the dimensions shown in Fig. 8.23.

The aperture distribution of the linearly y-polarized corrugated conical horn was in Sec-
tion 8.8 found to be

Ea(ρ) = J0(κ01ρ
′/a)e−jkρ

′2/(2L)ŷ for ρ′ ≤ a . (8.62)

Let us approximate this as a Gaussian aperture distribution of the form

Ea(ρ′) ≈ Ke−ρ′2/ρ2
ae−jkρ

′2/(2L)ŷ for 0 < ρ′ <∞ . (8.63)

8.9.1 Choosing the Gaussian beam parameters

We choose K and ρa in (8.63) such that the power integrals in the aperture are equal and
that the directivities are equal when L→∞. The Gaussian distribution in (8.63) extends to
infinity, so the conservation of power requires∫ a

0

[J
0
(κ

01
ρ′/a)]2ρ′dρ′ = K2

∫ ∞
0

e−2ρ′2/ρ2
aρ′dρ′ , (8.64)

which becomes
[J

1
(κ

01
)]2a2/2 = K2ρ2

a/4 . (8.65)

In order to give equal directivities in the far-field for the case that L → ∞, the following
equation must be satisfied2∫ a

0

J0(κ01ρ
′/a)ρ′dρ′ =

∫ ∞
0

Ke−ρ
′2/ρ2

aρ′dρ′ , (8.66)

which gives
a2J

1
(κ

01
)/κ

01
= Kρ2

a/2 . (8.67)

If we combine (8.65) and (8.67) we get

ρa =
√

2(a/κ01) ≈ 0.59a . (8.68)

2 See Section 7.5 on page 244.
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The Gaussian beam formulas become more applicable for broad beams if we measure ρa
and a along a wavefront, instead of normal to the z-axis. This means that (8.68) becomes
ρa/L = 0.59α where α is the half flare angle of the horn.

8.9.2 Radiation field

The radiation field of the horn is now described by the formulas in Section 7.6.4 with ρa =

0.59a and Ca = 1/L. This means that the far-field function is given by

G(r̂) = K
ρa
θ

0

e−(θ/θ
0
)2

e−jkzpcθ
2

ejφ∞ ŷ , (8.69)

with (all angles in radians)

θ
0

=
√
θ2

dif + θ2
GO

, (8.70)

θdif = 2/(kρa) , (8.71)

θ
GO

= ρa/L , (8.72)

zpc = −L(θGO/θ0)2 , (8.73)

φ∞ = − arctan(θdif/θGO) . (8.74)

These equations give the 8.7 dB beamwidth θ
0

and the phase center location zpc as a function
of the radius a of the horn aperture and the flare length L of the horn, when z = 0 in the center
of the aperture. We refer to the discussions in Sections 7.6.4 and 7.6.5, for interpreting θdif

as the beamwidth due to aperture diffraction and θ
GO

as that due to GO transmission.

We shall now describe three different choices of horn dimensions which we shall refer to as
flare angle-controlled horns, aperture-controlled horns and maximum gain horns.

8.9.3 Flareangle-controlled horn

From Eqs. (8.70)- (8.72) we see that the beamwidth θ0 is independent of the frequency if the
beamwidth contribution θ

GO
due to GO transmission is much larger than the contribution of

θdif due to aperture diffraction, i.e.,

θ
GO
� θdif , ρa/L� 2/(kρa) ,

or equivalently if

L� k

2
ρ2
a = πρ2

a/λ = 1.1a2/λ .

This condition corresponds to that the phase variation over the aperture is large, satisfying

φmax � π , (8.75)

because
φmax = ka2/(2L)� a2/ρ2

a = (κ
01
/
√

2)2 = 2.9 ≈ π . (8.76)

In this case we achieve (in radians)

θ0 = ρa/L = 0.59a/L and zpc = −L . (8.77)
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We can refer to this case as an ideally flareangle-controlled mode of operation, as the
beamwidth θ

0
is proportional to the half flareangle of the horn, which under the parax-

ial approximation, equals a/L radians. The phase center is located in the apex of the horn as
zpc = −L for all observation points. When Eq. (8.75) is not ideally satisfied, we will still refer
to the horn as flareangle-controlled. We may call it slightly flareangle-controlled if

π < φmax < 2π (8.78)

and strongly flareangle controlled when φmax > 2π.

8.9.4 Aperture-controlled horn

When the beamwidth contribution θdif due to aperture diffraction is much larger than θ
GO

due to GO transmission, i.e., when

θdif � θGO ; L� 1.1a2/λ

the phase variation over the aperture is small, satisfying

φmax � π . (8.79)

Then, in the limit φmax → 0, we see that (in radians)

θ0 = 2/(kρa) = 0.54λ/a , zpc = 0 . (8.80)

In this case the beamwidth θ0 varies linearly with the wavelength and is inversely proportional
to the frequency. It is determined completely by diffraction from the aperture plane at z = 0.
We can therefore refer to the horn as ideally aperture-controlled. The beam radius ρ(z)

varies from ρ = ρa in the aperture to ρ(z) = zθ0 (with θ
0

in radians) when z � πρ2
a/λ (see

Section 7.6.4). The phase center varies from zpc = −L in the close near-field to zpc = 0 (i.e.,
at the aperture plane) for observation points in the far-field.

8.9.5 Maximum gain horn

It is possible to differentiate Eq. (8.70) with respect to a and find the aperture radius a which
gives the narrowest beam, i.e., the highest directivity for a given constant length L of the
horn. This appears when

θ
GO

= θdif ; L = 1.1a2/λ ,

for which φmax ≈ π .
(8.81)

For this case
θ0

√
(4/kL) = 0.8

√
(λ/L) , zpc = −L/2 . (8.82)

We refer to this case as a maximum gain horn. Its phase center is seen to be located halfway
between the aperture and the apex. If we use (7.70), we see that the maximum directivity
for a given length L of the horn can be expressed as

D
0

= 8/θ2
0

= 2kL = 4πL/λ . (8.83)
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with θ
0

in radians. The maximum gain horn is therefore the shortest horn that can give
a certain specified directivity, and the length of it can be obtained from Eq. (8.83). Its
far-field phase center is halfway between the aperture and the apex of the horn. By using
Eqs. (8.83) and (8.69) we obtain a very simple equation to determine L, if a certain taper
T = 20 log |E(θ)/E(0)| is specified at an angle θ;

L/λ = −0.07T/θ2 , (8.84)

with θ in radians. It is also possible to design corrugated horns for providing as small beam
radius as possible at a certain distance z

N
from the aperture. The dimensions of such horns

are determined by the equation

(L+ z
N

)ρa/L = 2z
N
/kρa . (8.85)

Then, at the distance z
N

from the aperture, the phase center of the beam is located at
zpc = −L/2.

8.9.6 Design curves

We have plotted some design curves based on Eqs. (8.70) - (8.73) in Fig. 8.24 - 8.26?. If we
want to design the horn so as to give a prescribed illumination taper at a certain angle θe,
we can use Fig. 8.24 to find the required directivity of the horn. If we want −20 dB taper at
θe = 10◦, we read a directivity of G0 = 28 dBi. This number can then be used in Fig. 8.25
to determine the aperture diameter and flareangle of the horn. We see that with D = 11λ

and α = 5◦ we have a slightly aperture-controlled horn, but this will be L = 63λ long. The
shortest horn (maximum gain horn) having the same directivity has D = 13λ and α ≈ 8◦, i.e.,
a length of L = 46λ. A flareangle-controlled horn will have α ≈ 10◦ and D ≈ 23λ, for which
L = 65λ. Finally, we can find the phase center location in Fig. 8.26.

The Gaussian beam model for the radiation pattern of a corrugated horn antenna may be used
in general work on reflector antennas where an analytical feed pattern is needed. The model
was used here to define aperture-controlled and flareangle-controlled horns. These can also
be referred to as narrow-band and wide-band horns, respectively. The shortest horn giving
a specified directivity is called a maximum gain horn. This also represents the boundary
between flareangle-controlled and aperture-controlled horns at which the maximum phase
variation over the aperture is φmax ≈ π.

8.9.7 Example: Design of dual band horn

We will now use the Gaussian beam formulas for corrugated conical horn antennas in order
to determine the minimum size a horn can have in order to work at both 8.5 GHz (X-band)
and 2.3 GHz (S-band) according to some specifications to be given. The dual-band operation
is possible by using dual-depth corrugations, i.e., every second of the corrugations in the
horn are quarter wavelength deep at S-band and every second a quarter wavelength deep
at X-band. We will here only consider how to determine the major dimensions such as
the diameter and length of the horn. The horn is intended to feed an offset paraboloid for
nearly equal performance at S- and X-bands. To do this, we require that the feed pattern
have a taper of between 12.5 dB and 15 dB for θ = 45◦ at both frequencies. Furthermore, we
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require that the phase center locations at S-band and X-band be closer than λS/4, where λ
S

is the wavelength at S-band, in order to avoid a significant reduction in directivity due to
defocussing of the paraboloidal reflector.

SOLUTION:

From Fig. 8.24 we see that we need a directivity of D0 ≈ 13.2 dB in order to obtain −15 dB

taper at θe = 45◦. From the same figure we see that this corresponds to an 8.69 dB half
beamwidth of θ0 = 34◦. We can calculate this more accurately by using

20 log |G(θ)/G(0)| = −(θ/θ0)2 · 8.69 dB .

Inserting 15 dB taper at θe = 45◦ gives −15 dB = −(45◦/θ0)28.69 dB. Thus, the 8.7 dB width
which provides 15 dB taper for θ = 45◦ is

θ
0

= 45◦
√

8.69/15 = 34◦ .

We can obtain identical beamwidths at both S- and X-band by using an ideal flareangle-
controlled horn, i.e., a large horn with flareangle

α = θ
0
/0.59 = 34◦/0.59 = 58◦ .

This value can also be read from Fig. 8.25 by using D0 ≈ 13.2 dB. The aperture diameter
must be at least 10λ, which is very large.

We are satisfied with −12.5 dB taper for θ = 45◦ at X-band. A −15 dB taper corresponds to
a gain of 13.2 dB, and −12.5 dB taper corresponds to about 11.2 dB (see Fig. 8.24). Thus, we
can accept 2 dB less horn gain at S-band compared to X-band.

We have already shown that a flareangle-controlled horn should have α = 58◦ to produce
D0 ≈ 13.2 dB. Let us study the curve for α = 60◦ flareangle in Fig. 8.25 which is very close
to the design value of 58◦. We see that the directivity is larger than 11.2 dB when D > 2.4λ.
Thus, if we choose D = 2.4λS at S-band, we obtain

D = 2.4λ
S
· 8.5 GHz

2.3 GHz
= 8.9λ

X
,

at X-band, for which the α = 60◦ curve in Fig. 8.25 gives D0 = 13.2 dB. The wavelength at
S-band is

λ
S

=
300

2.3
mm = 130 mm ,

so the physical dimensions of the horn becomes

D = 2.4 · 130 mm = 320 mm ,

L = D/(2 tanα) = 90 mm .

The phase center locations of this horn can be read from Fig. 8.26 or calculated by us-
ing (8.73). At S-band we get zpc = −0.65L and at X-band zpc = −0.97L. The spacing between
these two locations is ∆zpc = 0.32L. Thus,

∆zpc/λS = 0.32 · 90 mm/130 mm = 0.2215 .

This satisfies the requirement of ∆zpc < λS/4, so the horn satisfies the desired specifica-
tion.
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8.10 Other types of horn antennas

The corrugated conical horn was first described in 1966 [4], [5] and [6], and since then it has
developed to have special features and for a large number of applications. We will here only
refer to the basic paper by Thomas [7], the extensive book of Olver, Clarricoats et al. [8].
In addition, the compact corrugated horn in [9] is worth mentioning. It has constant beam
width suitable for prime-focus paraboloids, low cross-polarization and low return loss over
almost an octave bandwidths. Corrugated horns can also be provided with a lens to make
them more compact [10], or they can be profiled to a shape that is more compact then their
original conical shapes. The Gaussian beam model of corrugated horns presented in this
chapter was first published in [12].

The corrugated surface is the basis of the concept of soft and hard surfaces3, and the concept
itself grew out from a desire to realize horns with uniform aperture distribution, so-called
hard horns [13]. The concept of soft and hard surfaces has inspired to other ways of realizing

3 The soft and hard boundary conditions are described in Section 4.1.4.
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soft horns than by corrugations, such as the strip-loaded horn [14] and the metamaterial
horn [15]-[16]. The latter makes use of a metal-wired texture and is actually almost a hard
horns. The boundary condition at the wall is the same in E- and H-plane, not entirely hard
but with much better aperture efficiency than a soft horn. Some more soft and hard horn
antennas are reviewed in [17].

Several studies have been made on hard horns with uniform aperture distribution. However,
they cannot be realized with large sufficient bandwidth for practical applications. Still, if the
application has two narrow bands a hard waveguide section may be used to improve smooth
wall horn designs [18].

The quad-ridge horn is a very wideband coaxially-fed horn-type antenna. It was originally
developed for use in test ranges and for EMC applications of almost decade bandwidth [19].
However, it is also possible to use them over a smaller but still very wide frequency band to
feed reflectors [20].
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8.11 Exercises to Chapter 8

1. Pyramidal horn: Consider a y-polarized large pyramidal horn antenna with a rectangular
aperture.

a) Use the theory for apertures in free space to find the far-field function of it, when we
assume that the phase is constant on the aperture. Use the Huygens equivalent. What is the
cross-polar radiation pattern?

b) We excite the same horn for circular polarization in a way that there is no cross-polarization
in the center of the horn aperture. What is the maximum relative cross-polar level in the
aperture (i.e., relative to the co-polar maximum)? Use the Huygens equivalent to derive an
expression for the radiation field. Find the expressions for the co- and cross-polar radiation
patterns in the two principal planes when the aperture is quadratic. What is the relative
cross-polar level in dB in these two planes for sin θ = λ/(2a) where 2a is the aperture width?

2. Conical corrugated horn: Use the Gaussian beam formulas for horn antennas to design a
conical corrugated horn with a 10 dB half-beamwidth of 15◦ at 12 GHz. The half-beamwidth
is only allowed to vary by ±2 % over a ±5 % bandwidth. Try to keep the dimensions as small
as possible.

3. Dual-band corrugated horn: We shall now use the Gaussian beam formulas for corrugated
conical horn antennas in order to determine the minimum size a horn can have in order to
work at both 8.5 GHz (X-band) and 2.3 GHz (S-band) according to some specifications to be
given. The dual-band operation is possible by using dual-depth corrugations, but we will here
only consider how to determine the major dimensions such as the diameter and length of the
horn. The horn is intended to feed an offset paraboloid for nearly equal performance at S- and
X-bands. This corresponds to requiring that the feed pattern has a taper of between 12.5 dB
and 15 dB for θ = 45◦ at both frequencies. Furthermore, the phase center locations at S-band
and X-band must be closer than λS/5, where λS is the wavelength at S-band, in order to avoid
a reduction in directivity due to defocussing of the paraboloidal reflector.

a) Determine the 8.7 dB width of the Gaussian beam which provides 15 dB taper for θ = 45◦.

b) If we have no requirement on the size of the horn, we can obtain identical beamwidths
and phase center positions at S- and X-bands for a certain choice of dimensions. What kind
of horn is this, and what is the flare angle?

c) Use the flare angle determined in step b), and determine the minimum length of the horn
which satisfies the requirements on the taper and phase center positions.

4. See the exercises about arrays of horn antennas in Chapter 10.
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Chapter 9

Reflector antennas

Reflector antennas are widely used in communication, radar and radio astronomy. Their sizes
vary from small 0.3 m diameter reflectors for millimeter-wave communication links to large
ground stations for satellite communications or radio telescopes with diameters of several
tens of meters. The largest reflector antenna in the world is the radio telescope in Arecibo
which has a spherical reflector with a diameter of 300 m. Reflector antennas have often a
fixed main beam direction, but can also be steered by mechanical displacement of the feed
or by rotation and tilting of the whole antenna.

Reflector antennas can have many different forms. Normally they consist of one or more re-
flectors which are designed to collimate an incident plane wave by reflection and transmission
via each reflector to a focal point at a convenient location. The first reflector on reception
is the largest and is called the main reflector. The next reflector is called the subreflector.
If there are three or more reflectors, the last ones may either be called extra subreflectors,
or feed reflectors. The feed reflectors may make up a beam waveguide. The feed antenna
is located in the focal point. This is normally a horn antenna or a dipole above a ground
plane. On transmit, the feed antenna illuminates the reflector system such that a desired field
distribution is generated in the aperture plane in front of the main reflector. If the antenna
has a pencil beam, the desired aperture distribution always has constant phase.

The reflectors may also be fed by an array of feeds, whereby we can get multiple simultaneous
main beams (multi-beam antenna). The feed array is in this case often called a feed cluster.
It is also possible to generate contoured beams, either by having one feed and shaping the
reflector, or by using a feed array, or both. Some examples of different reflector antennas
are illustrated in Fig. 9.1. The first two are primary-fed paraboloidal reflectors with an
open waveguide feed and a self supported rear-radiating waveguide feed respectively. For
comparison the left antenna in Fig. 1.1 shows a paraboloid with a self-supported dipole-disk
feed. The third antenna in Fig. 9.1 is an offset parabolic reflector with a small conical horn
feed. The fourth is a rotationally symmetric dual-reflector antenna with a corrugated horn
feed. If the subreflector has convex shape as shown, it is called a Cassegrain type subreflector.
The fifth antenna is an offset dual-reflector with a concave (Gregorian type) subreflector and
a corrugated horn feed. The sixth antenna is a parabolic cylinder antenna fed by a linear
array of crossed dipoles. The linear feed array is also called the line feed. The seventh
antenna is the Arecibo spherical reflector antenna with a dual-reflector feed which can be
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moved mechanically to steer the beam.

We will in Section 9.1 describe how a reflecting surface of any known shape can be analyzed
by integration of a high frequency approximation of the induced currents on the surface, and
by aperture integration using the formulas in Chapter 5. Thereafter, we will show how to use
these methods to analyze a primary-fed paraboloid (Section 9.2) and a rotationally symmetric
Cassegrain antenna (Section 9.3). In both these cases the antennas will be characterized in
terms of different subefficiencies when the feed is a BOR1 antenna (Section 9.4).

9.1 General reflector antenna theory

We will in this section introduce Geometrical Optics (GO), Physical Optics (PO) integration
and aperture integration by describing how to analyze an arbitrary single metal reflector
which is illuminated by an antenna with a known far-field function (See Fig. 9.2). The
approaches are general and extendable to multi-reflector systems.

9.1.1 General description of reflector and feed

The location and orientation of the feed is defined by the location rf of the origin of its
coordinate system (i.e., phase reference point) and the directions x̂f , ŷf and ẑf of its axes,
all expressed in their components in a global coordinate system.

The reflector surface is defined by the position vector

r
S
(u, v) = x

S
(u, v)x̂ + y

S
(u, v)ŷ + z

S
(u, v)ẑ , (9.1)

when u and v vary between their boundaries, that define the reflector rim. We choose the
reflector coordinate system to coincide with the global coordinate system. A rotationally
symmetric reflector is defined by

r
S
(ρ, ϕ) = ρ cosϕx̂ + ρ sinϕŷ + z(ρ)ẑ , (9.2)

for 0 < ρ < D/2, where D is the reflector diameter.

We will in the analysis to follow need the surface normal n̂. This can be calculated from the
two tangent vectors

tu =
∂

∂u
r
S
(u, v) = x̂

∂

∂u
(x

S
(u, v)) + ŷ

∂

∂u
(y
S
(u, v)) + ẑ

∂

∂u
(z
S
(u, v)) ,

tv =
∂

∂v
r
S
(u, v) = x̂

∂

∂v
(x

S
(u, v)) + ŷ

∂

∂v
(y
S
(u, v)) + ẑ

∂

∂v
(z
S
(u, v)) ,

by using

n̂ = tu × tv/|tu × tv| . (9.3)

We must check that n̂ is directed towards the lit side of the reflector, and if it is not we
reverse its sign.
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Primary-fed paraboloids.
Feed supported by struts (left) and self supported (right)

Offset primary-fed
parabolic reflector

Offset Gregorian
dual-reflector antennas

Arecibo spherical reflector with dual-reflector feed (inside enclosure)

EISCAT VHF parabolic cylinder antenna

Symmetrical Cassegrain

Figure 9.1: Examples of reflector antennas.
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9.1.2 Incident field on reflector

We assume here that the reflector is in the far-field of the feed. Then, the radiation field of the
feed at an arbitrary observation point r can be expressed as (see Eq. (2.39) in Section 2.3.3)

Ef (r) =
1

rf
e−jkrfGf (r̂f ) , (9.4)

where Gf (r̂f ) is the far-field function and r̂f = (r− rf )/rf with rf = |r− rf | and rf the phase
reference point. The incident field on the reflector is

Ei(rS ) = Ef (r
S
) , (9.5)

where Ef (rS ) is given by (9.4) with rf = |rS (u, v)−rf | and r̂f = (rS (u, v)−rf )/rf . The incident
H-field on the reflector is

Hi =
1

η
r̂f ×Ei . (9.6)

9.1.3 Reflected GO field

Geometrical Optics (GO) is an approximate method to determine electromagnetic fields.
It is asymptotically correct for high frequencies. In GO, all fields in free space propagate
geometrically along straight lines, referred to as rays, and these rays are reflected at material
interfaces by the classical reflection law. In order to analyze a multi-reflector system with
GO we need to consider both reflection and transmission of GO fields. We will here only
present the equation needed to find the propagation direction of the reflected field and its
complex amplitude and direction at the reflected point. This is sufficient in order to analyze
single-reflector systems.

The incident field on the reflector, as defined in (9.4), is a spherical wave. A field incident at
any specific point rs(ur, vr) can be interpreted as a field propagating along a GO ray defined
by (see Fig. 9.3)

r(s) = rf + sŝi ; ŝi = r̂f , (9.7)
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where ŝi is the direction of the ray and s is a parameter measuring distance along the ray and
being zero at the start point rf of the ray. The ray is reflected at rs(ur, vr), and the direction
of the reflected ray can be found by using the reflection law, which in vector notation becomes

ŝr = ŝi − 2(n̂ · ŝi)n̂ . (9.8)

This corresponds to n̂ · ŝr = −n̂ · ŝi which means that cos θr = cos θi and θr = θi, i.e., the
angle of reflection is equal to the angle of incidence. The operation in (9.8) can be expressed
verbally as changing the sign of the n̂ component of ŝi, because we subtract the n̂ component
twice.

The reflected E-field Er must be orthogonal to ŝr in order to be a GO field, and, the total
E-field Etot = Ei + Er at rs(ur, vr) must satisfy Etot × n̂ = 0, i.e., the tangential E-field being
zero, if the reflector is a good conductor. These two conditions are satisfied when

Er = −Ei + 2(Ei · n̂)n̂ . (9.9)

The corresponding reflected H-field becomes

Hr = Hi − 2(Hi · n̂)n̂ =
1

η
ŝr ×Er . (9.10)

The reflected field propagates along the reflected ray

r(s) = rs(ur, vr) + sŝr . (9.11)

The equation for propagating the reflected GO field along this ray is given by a general
GO transmission formula, which is more complicated than Eq. (9.4). It depends on the two
principal curvatures of the reflector surface at rs(ur, vr). The equation will not be introduced
here. We will only treat the case for which the ŝr of all reflected rays are parallel, i.e.,

ŝr = ẑ (9.12)

in all reflection points. Then, the GO transmission gives no variation of the field amplitude
along the ray, rather only a phase progression according to

Er(rs + sŝr) = Er(rs)e
−jks . (9.13)

The E- and H-fields at a point r(s) on a GO ray in free space are always orthogonal to the
direction ŝ of the ray, and related by

H(r(s)) =
1

η
ŝ×E(r(s)) . (9.14)
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9.1.4 PO integration

In order to determine the radiation (scattering) from the reflector we must find the induced
electric currents Js(rs) on it (Fig. 9.4). This is generally very laborious, but we may ap-
proximate it by using GO as follows. If the scattered field at rs is approximated by the GO

reflected field. By using (9.10) the total H-field becomes

Htot(rS ) = Hi + Hr = 2Hi − 2(Hi · n̂)n̂ . (9.15)

The induced electric currents at a PEC reflector are from equation (4.14) given as J = n̂×H.
Using this with Htot approximated by (9.15) we get

J
PO

(rs) = 2n̂×Hi . (9.16)

This is commonly referred to as the Physical Optics (PO) approximation for the current
distribution. We see that the induced PO currents are found from the surface normal vector
and the incident H-field.

The radiation field of the total antenna, including both the feed (Ef (r)) and the scattered
field Es(r) from the reflector, in a point r in the far-field of the reflector, is now (r = |r|)

Et(r) = Ef (r) + Es(r) =
1

r
e−jkrGt(r̂) , (9.17)

where the far-field function of the total antenna is

Gt(r̂) = Gf (r̂)ejk(rf ·r̂) + GPO(r̂) . (9.18)

Here, the phase factor following Gf (r̂) is found by using (2.52)1 with rf = rA , and where
the contribution from the PO currents on the reflector is found by using (4.49) and (4.51)2;

1 See Section 2.3.4.
2 See Section 4.2.2.
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G
PO

(r̂) = I
J
− (I

J
· r̂)r̂ ; I

J
= Ck

x

S′

ηJ
PO

(rs)e
jk(rs·r̂)dS , (9.19)

with Ck = −jk/(4π) as before. The phase reference point of Gt(r̂) is the origin of the global
coordinate system. The total field is always found by summing up the contributions from
both actual and induced sources, i.e., from the feed (giving Gf (r̂)) and the induced currents
on the reflector (giving GPO(r̂)). IJ is the PO far-field integral. The PO integration method
is very accurate for large reflector antennas, i.e., when the diameter D � λ.

9.1.5 Aperture integration

Let us assume that all the rays reflected from the reflector are parallel with ẑ. Then, we may
define an aperture plane with normal ẑ in front of the reflector, and the aperture field can
be found by using the GO formula in (9.13) as (Fig. 9.4)

Ea = Er(rs)e
−jk(za−zs) , (9.20)

where za is the location of the aperture plane and zs = zs(ur, vr) is the z-coordinate of the
reflection point rs = rs(ur, vr) at the reflector surface. The H-field in the aperture is

Ha =
1

η
ẑ×Ea . (9.21)

We have now a plane aperture in free space, and we can calculate the radiation field from it
by using the Huygens equivalent. This gives for the y-polarized component of the aperture
field (see Eq. (7.20))

Ga(r̂) = −Ck[(ŷ− (ŷ · r̂)r̂)− (ŷ× ẑ)× r̂]Ẽay (k(x̂ · r̂), k(ŷ · r̂))ejkza , (9.22)

where Ck is as before and

Ẽay (kx, ky) =
x

A

Eay (x′, y′)ej(kxx
′+kyy

′)dx′dy′ , (9.23)

with Eay (x′, y′) = Ea ·ŷ, kx = k(x̂·r̂) and ky = k(ŷ·r̂). The x-polarized component is calculated
correspondingly. The approach above can only be used when all the rays reflected from the
reflector are parallel, i.e., ŝr = ẑ. This is approximately the case in most reflector antennas.
If ŝr ≈ ẑ, we may use the paraxial approximation ŝr = ẑ, and still calculate the aperture field
in the way shown above. This is a very good approximation when the observation direction
r̂ = ẑ, since then the phase of the integrand becomes equal to the phase of the integrand of
the PO integral. This is evident from (9.24) in the following subsection. The approximation
is acceptable because the accuracy of the calculation of the far-field function is more sensitive
to the correct phase in the aperture than the correct amplitude.

9.1.6 Aperture integration by projection of the PO integral

Aperture integration is convenient compared to PO integration because the aperture integral
has the form of a two-dimensional Fourier transform. However, the aperture fields can only
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be defined well when the rays reflected by the main reflector are parallel so that (9.20) can be
applied. This is rarely exactly true, and it is never true when the feed is not located at the
focal point of the reflector. Therefore, we shall here introduce a more general aperture field
distribution, obtained by projection of the PO integral onto an arbitrarily chosen aperture
plane (Fig. 9.5). Let us write the PO far-field function in (9.19) as

G
PO

(r) = Ck
x

S

[ηJ
PO

(rs)− (ηJ
PO

(rs) · r̂)r̂]ejk(rs·r̂)dS . (9.24)

Let us now define an aperture in the x′y′-plane normal to the ẑ′ axis of an arbitrary primed
coordinate system3. We introduce a phase and amplitude projection Ja of JPO in the aperture
plane A by

JadA = (J
PO
− (J

PO
· ẑ′)ẑ′)e−jk(z′a−z

′
s)dS , (9.25)

where z′a and z′s are the z′-locations of the aperture and the reflection points, respectively,
in the primed coordinate system. Moreover,

dA = (n̂ · ẑ′)dS (9.26)

is the projection of the infinitesimal surface element in Fig. 9.5 on to the primed aperture
plane. Then, the integrand in (9.24) can be rearranged as follows

IPO = (JPO − (JPO · r̂)r̂)ejk(rs·r̂)dS

= {J
PO
− (J

PO
· ẑ′)ẑ′ + (J

PO
· ẑ′)ẑ′ − (J

PO
· r̂)r̂}ejk(rs·r̂)

=
{

Jae
jk(z′a−z

′
s)dA+ (JPO · ẑ′)ẑ′ − (JPO · r̂)r̂dS

}
ejk(rs·r̂) .

By using (Ja · r̂)r̂ejk(z′a−z
′
s)dA = (JPO · r̂)r̂dS − ( ˆJPO · ẑ

′)(ẑ′ · r̂)r̂dS, we arrive at

I
PO

= ejk(rs·r̂) ·
{

[Ja − (Ja · r̂)r̂]ejk(z′a−z
′
s)dA− (J

PO
· ẑ′)(ẑ′ · r̂)r̂ + (J

PO
· ẑ′)ẑ′

}
dS

≈ [Ja − (Ja · r̂)r̂]ejk(x′sx̂
′+y′sŷ

′)·r̂ejkz
′
adA .

The last approximation is obtained by using

(J
PO
· ẑ′)ẑ′ − (J

PO
· ẑ′)(ẑ′ · r̂)r̂ ≈ 0 , and

rs · r̂ + (z′a − z′s) = (x′sx̂
′ + y′sŷ

′) · r̂ + z′s((ẑ
′ · r̂)− 1) + z′a

≈ (x′sx̂
′ + y′sŷ

′) · r̂ + z′a ,

when |r̂− ẑ′| � 1.

In this way the PO integral of the far-field function has been approximated by an aperture
integral which has the form of a Fourier transform, i.e.,

G
A

= Ck(ηJ̃a − (ηJ̃a · r̂)r̂)ejkz
′
a ; J̃a =

x

A

Jae
jk(x′sx̂+y′sŷ)·r̂dx′dy′ . (9.27)

The results GPO(r̂) (obtained by PO) and GA(r̂) (obtained by aperture integration) from the
above are identical for r̂ = ẑ′, i.e., when we observe normal to the aperture plane. Therefore,

3 The aperture in Section 9.1.5 was defined by ẑ′ = ẑ and by the location r0 = zaẑ of its origin in the
global coordinate system.
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Figure 9.5: Projection of the PO currents into an aperture.

GA(r̂) can be used as an acceptable approximation for GPO(r̂) for small observation angles
θ′, i.e., when |r− ẑ′| � 1.

The aperture integral GA(r̂) obtained by projection of the PO integral can be used for all
choices of directions ẑ′ even if the reflected GO fields from the reflector are not parallel with
the ẑ′ axis. However, the accuracy degrades more rapidly away from the ẑ′ direction (i.e.,
with increasing |r̂− ẑ′|) if the direction of the reflected rays deviate considerably from ẑ′ (i.e.,
if |ŝr − ẑ′| is large). When r̂ = ŝr = ẑ′, GA(r̂) becomes identical to the conventional aperture
integral Ga(r̂) of the GO aperture fields presented in (9.22), except for the incremental element
factor which for Ga(r̂) is that of a Huygens source and for GA(r̂) is an electric current.

9.2 The paraboloidal reflector

We now apply the formulations in Section 9.1 to a rotationally symmetric paraboloidal re-
flector (Fig. 9.6), and present the formulas for this case. The paraboloid with focal point in
the origin is defined by

rs(ρ, ϕ) = ρρ̂+ z(ρ)ẑ ; ρ̂ = cosϕx̂ + sinϕŷ , (9.28)

with z(ρ) = −F + ρ2/(4F ) for 0 ≤ ρ ≤ D/2 , (9.29)

where F is the focal length and D is the diameter of the reflector. An alternative parametric
description giving identical shape is

rs(θf , ϕ) = r(θf )r̂ ; r̂ = sin θf ρ̂− cos θf ẑ , (9.30)

with r(θf ) = F/ cos2(θf/2) = 2F/(1 + cos θf ) for 0 < θf < θ
0
, (9.31)

where θ
0

is the subtended half-angle of the paraboloid. The polar-angle θf of the feed is
measured relative to the negative z-axis of the global coordinate system. The primary-fed
paraboloid is normally deep with 70◦ < θ0 < 90◦.
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Figure 9.6: Geometry of rationally symmetric paraboloid.

Two independent parameters are needed in order to specify the paraboloid. We can use any
two of the three parameters F , D and θ

0
(or any two combinations of them). A common

choice is D and F/D, but we will here prefer D and θ
0

since θ
0

gives a more direct measure
of the required beamwidth of the feed pattern than the F/D. The following formulas relate
ρ and D to θf and θ0 :

ρ = r(θf ) sin θf = F sin θf/ cos2(θf/2) = 2F tan(θf/2) , (9.32)

dρ/dθf = F/ cos2(θf/2) = r(θf ) , (9.33)

D = 4F tan(θ0/2) . (9.34)

9.2.1 Surface normal, incident and reflected ray

We calculate the surface normal vector as explained in Subsection 9.1.1. This gives

tϕ =
∂

∂ϕ
rs(θf , ϕ) = r(θf )

∂

∂ϕ
r̂ = r(θf ) sin θf

∂

∂ϕ
ρ̂ = r(θf ) sin θf ϕ̂ , (9.35)

tθf =
∂

∂θf
rs(θf , ϕ) = r̂

∂

∂θf
r(θf ) + r(θf )

∂

∂θf
r̂

= F cos−3(θf/2) sin(θf/2)r̂ + r(θf )θ̂f

= F cos−3(θf/2)[sin(θf/2)r̂ + cos(θf/2)θ̂f ] .

(9.36)

If we now use ϕ̂× r̂ = −θ̂f and ϕ̂× θ̂f = r̂ we obtain

n̂′ = (tϕ × tθf )/|tϕ × tθf | = − sin(θf/2)θ̂f + cos(θf//2)r̂ . (9.37)

This n̂′ is directed into the shadow side, so we invert it to achieve

n̂ = sin(θf/2)θ̂f − cos(θf/2)r̂ . (9.38)

We locate the feed with its phase reference point in the focal point. Then, the direction of
the incident ray is

ŝi = r̂ . (9.39)
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The direction of the reflected ray becomes

ŝr = ŝi − 2(n̂ · ŝi)n̂ = ẑ , (9.40)

by using n̂ · ŝi = − cos(θf/2) and

r̂ + 2 cos(θf/2)n̂ = r̂ + sin θf θ̂f − 2 cos2(θf/2)r̂ = − cos θf r̂ + sin θf θ̂f = ẑ .

Thus, all the rays reflected from the paraboloid are parallel with the z-axis when the feed is
located with its phase reference point in the focus.

9.2.2 Aperture field

If the feed is of BOR1 type and polarized in ŷf -direction, its far-field function is

Gf (r) = Gf (θf , ϕf ) = G
E

(θf ) sinϕf θ̂f +G
H

(θf ) cosϕf ϕ̂f , (9.41)

where the index refers to the coordinate system of the feed, and GE (θf ) and GH (θf ) are the
E- and H-plane far-field functions, respectively. θf , ϕf , θ̂f and ϕ̂f can be calculated from r,
x̂f , ŷf and ẑf by standard formulas. We locate the feed such that its phase reference point
coincides with the focal point of the paraboloid. Then, the incident field on the reflector is
found from (9.4), (9.5) and (9.31) to be

Ei =
1

r(θf )
e−jkr(θf )[G

E
(θf ) sinϕf θ̂f +G

H
(θf ) cosϕf ϕ̂f ]

=
1

r(θf )
e−jkr(θf )[G

E
(θf ) sinϕθ̂f −GH

(θf ) cosϕϕ̂] ,

(9.42)

where in the last line, by using that x̂f = −x̂ and ŷf = ŷ, so that ϕf = π − ϕ and ϕ̂f = −ϕ̂,
we have introduced the azimuth angle ϕ of the global coordinate system . For θf < θ0 , the
reflected field becomes

Er = −Ei + 2(Ei · n̂)n̂ = − 1

r(θf )
e−jkr(θf )[G

E
(θf ) sinϕρ̂+G

H
(θf ) cosϕϕ̂] , (9.43)

because (see Fig. 9.7)

θ̂f − 2(θ̂f · n̂)n̂ = ρ̂ , ϕ̂− 2(ϕ̂ · n̂)n̂ = ϕ̂ . (9.44)

Finally, the aperture field at za = 0 becomes

Ea(ρ, ϕ) = E
E

(ρ) sinϕρ̂+ E
H

(ρ) cosϕϕ̂ (9.45)

for ρ < D/2, with
E
E

(ρ)
E
H

(ρ)

}
= − 1

F
cos2(θf/2)

(
G
E

(θf )
G
H

(θf )

)
e−j2kF , (9.46)

where the relation between ρ and θf is given in (9.32). The phase term −2kF is a result of
the total path length

r(θf ) + r(θf ) cos θf = kr(θf )(1 + cos θf ) = 2kF . (9.47)



307 CHAPTER 9. REFLECTOR ANTENNAS

zfF

θf

r (θf ) r (θf )cosθf

θf

^

xf
^ x̂

z

^

^

φ

Figure 9.7: Reflection at paraboloidal surface.

This is readily seen by using (9.31). The feed can also be described by its co- and cross-polar
patterns Gco45◦ (θf ) and Gxp45◦ (θf ) in the 45◦-plane4. Using these the aperture fields become5

Ea(ρ, ϕ) = [Eco45◦ (ρ)− Exp45◦ (ρ) cos 2ϕ]ŷ− Exp45◦ (ρ) sin 2ϕx̂ (9.48)

for ρ < D/2, with

Eco45◦ (ρ)
Exp45◦ (ρ)

}
= − 1

F
cos2(θf/2)

(
Gco45◦ (θf )
Gxp45◦ (θf )

)
e−j2kF . (9.49)

The cross-polar part in (9.48) varies as sin 2ϕ which gives four cross-polar sidelobes with
maximum in the ϕ = ±45◦-planes, as for the feed pattern. We see also that the aperture
field has constant phase if the far-field function of the feed has constant phase. This never
appears exactly in reality, but the most constant phase appears when the phase reference
point is at the phase center of the feed. In addition, the feed must be located relative to
the reflector such that its phase center is located at the focal point of the paraboloid. This
appears automatically if the phase reference point coincides with the phase center. Actually
all the above derivations were done with the initial assumption that the phase reference
point coincides with the focal point. Finally, we see that the illumination of the aperture rim
relative to the center of the aperture is

− 20 log |Eco45◦ (D/2)/Eco45◦ (0)| =
=− 20 log | cos2(θ

0
/2)Gco45◦ (θ

0
)/Gco45◦ (0)| .

(9.50)

This value is commonly referred to as the aperture illumination taper . The feed illumination
taper is correspondingly

−20 log |Gco45◦ (θ
0
)/Gco45◦ (0)| . (9.51)

The difference between these two is due to the space attenuation between the feed and the
reflector, which has a cos2(θ/2) variation with θ.

4 See the BOR1 relations in Eqs. (2.84)-(2.87) in Section 2.4.2.
5 See also Eq. (7.44) to (7.49) in Section 7.5.1.
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9.2.3 Typical radiation pattern of paraboloidal reflector

The far field pattern can be computed most accurately by PO integration as explained in
Section 9.1.4. It is then important to add the contribution from the far field function of the
feed, according to (9.17). If we do not do this, there will be a large erroneous radiation in
the region behind the reflector. The reason is that the PO integral over the reflector and the
direct radiation from the feed cancel each other vectorialy in the shadow region behind the
reflector, because the PO integration provides the scattered field from the reflector6.

The far field pattern from aperture integration is less accurate, but more convenient for
analytical work and for interpretations. When we have found the aperture field we can
directly use the aperture field integration formulas for free space apertures in Chapter 7. It
is important to note that the aperture field is an approximation of the total field caused by
the far field of the feed being reflected by the reflector surface, in contrast to the PO integral
that only represents the scattered field of the reflector7. Therefore, when we include the
direct contribution to the total far field from the far field of the feed, we must in this method
remove the part of the feed pattern that is blocked by the reflector. This is illustrated
in Fig. 9.8. The part of the feed pattern that radiates outside the reflector is referred to
as spillover, and represents both a loss in aperture efficiency and increased sidelobes. By
comparing the right graphs of Fig. 9.8(b) and 9.8(c) we can clearly see the contribution to
the total sidelobes due to direct feed radiation. These so-called spillover lobes appears close
to θ = 180◦ − θ0 . There is a sharp so-called shadow boundary at the edge of the reflector at
θ = 180◦ − θ0 , providing a shadow behind the reflector. This will in reality be diffuse due to
edge diffraction, which can be accounted for by extending the ray tracing theory with edge
diffraction theory. This causes the spillover lobes to be lower than shown in Fig. 9.8. The free
space aperture integration formula (using the Huygens equivalent) provides also a far field
in the shadow region behind the reflector. This is inaccurate but still usable in theoretical
works. The PO integration approach provides much more correct far field patterns than the
ones presented here by aperture integration and addition of feed spillover. Still, the present
approach is still very useful for interpretation, and, it is numerically faster.

Fig. 9.8(a) illustrates a center blockage of the aperture field, due to the feed (or the subreflec-
tor in a rotationally symmetric dual-reflector antenna). This effect will be treated in more
detail in Section 9.4.6. We see the effect on the sidelobes by comparing the near-in sidelobes
in the two graphs in Fig. 9.8(c). The center blockage causes an increased first sidelobe, and
the increase is larger the stronger the feed illumination taper is. We see that every second
sidelobe get increased level due to the center blockage.

9.2.4 Directivity, feed efficiency and spillover

The total radiated power can be found by integrating the radiation intensity of the feed. The
corresponding power integral P becomes (see the definition in (2.93))

P = 2π

∫ π

0

[|Gco45◦ (θf )|2 + |Gxp45◦ (θf )|2] sin θfdθf . (9.52)

6 See the definition of scattering in Section 1.3.1.
7 See the definition of scattering in Section 1.3.1.



309 CHAPTER 9. REFLECTOR ANTENNAS

feed pattern

feed

reflector

spillover

feed

illumination

taper

aperture

illumination

taperaperture illumination Ea (ρ, φ)

center blockage d

D

(a)

−180 −135 −90 −45 0 45 90 135 180
−30

−20

−10

0

10

20

30

40
Feed pattern

θ ( °)

G
a

in
 (

d
B

i)

 

 

10 dB

15 dB

20 dB

Taper

−180 −135 −90 −45 0 45 90 135 180
−30

−20

−10

0

10

20

30

40
Feed pattern with blockage from re!ector

θ ( °)

G
a

in
 (

d
B

i)

 

 

10 dB

15 dB

20 dB

Taper

(b)

−180 −135 −90 −45 0 45 90 135 180
−30

−20

−10

0

10

20

30

40
Unblocked aperture pattern

θ ( °)

G
a

in
 (

d
B

i)

 

 

10 dB

15 dB

20 dB

Taper

−180 −135 −90 −45 0 45 90 135 180
−30

−20

−10

0

10

20

30

40
Total radiation pattern (feed+aperture)

θ ( °)

G
a

in
 (

d
B

i)

 

 

10 dB

15 dB

20 dB

Taper

(c)

Figure 9.8: ?Effects of spillover, center blockage and taper in symmetrical paraboloid. (a) Illustra-
tion of feed pattern and aperture distribution in cross section of rotationally symmetric paraboloidal
reflector with diameter D. (b) and (c) Contributions to co-polar far field patterns of paraboloid in
45◦-plane when D = 30λ, d = 3λ and θ0 = 80◦ for different feed illumination tapers. Illustrated for
cosn(θ/2) feed pattern, and by integration over reflector aperture. All contributions are presented
in the output coordinate system of the reflector with vertical z-axis. Therefore, the maximum of the
feed pattern appears at ±180◦.
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The far-field function of the reflector can be calculated from the aperture field in (9.48) by
using the equations in Section 7.5.1. We will study this far-field function for θ = 0, in order
to derive expressions for the aperture efficiency. We then have

G(0, 0) = −jCk2Ẽay (0, 0)ŷ , (9.53)

where Ck = −jk/4π and (if we use (9.34) and suppress e−j2kF )

Ẽay (0, 0) = 2π

∫ D/2

0

Eco45◦ (ρ)ρdρ

= πD cot

(
θ

0

2

)∫ θ0

0

Gco45◦ (θf ) tan

(
θf
2

)
dθf .

(9.54)

In what follows, we use both the two expressions for the aperture integral in (9.54). The
former is an integral over the aperture distribution, whereas the equivalent latter expression
is written as an integral over the feed pattern, see the illustration in Fig. 9.8. The former
expression is generally valid for all reflector types, whereas the latter expression can only be
used for feeds illuminating paraboloidal reflectors.

The directivity becomes8

D0 =
4π|G(0, 0) · ĉo∗|2

P
=

4π

λ2
eapπ

(
D

2

)2

= eap

(
πD

λ

)2

, (9.55)

where the aperture efficiency is

eap = |Ẽay (0, 0)|2/(PA) (9.56)

with A = π(D/2)2, as the aperture area. This can be expressed as

eap =
4π cot2(θ0/2)

∣∣∣∫ θ00
Gco45◦ (θf ) tan(θf/2)dθf

∣∣∣2
2π
∫ π

0
[|Gco45◦ (θf )|2 + |Gxp45◦ (θf )|2] sin θfdθf

. (9.57)

The effects of tolerances and the blockage caused by the feed and its support legs have not
been included in this version of eap. It is a function of the radiation characteristics of the
feed, and it is therefore often referred to as the feed efficiency . It is also a function of the
depth θ0 of the paraboloid. We can alternatively express the aperture efficiency in terms of
the integrals of the aperture distribution, according to

eap = esp


(

1
A

) ∣∣∣2π ∫D/20
Eco45◦ (ρ)ρdρ

∣∣∣2
2π
∫D/2

0
[|Eco45◦ (ρ)|2 + |Exp45◦ (ρ)|2]ρdρ

 , (9.58)

where

esp =
2π
∫ θ0

0
[|Gco45◦ (θf )|2 + |Gxp45◦ (θf )|2] sin θfdθf

2π
∫ π

0
[|Gco45◦ (θf )|2 + |Gxp45◦ (θf )|2] sin θfdθf

(9.59)

is the spillover efficiency . The spillover efficiency represents the power within the subtended
angle θ

0
(i.e., the power hitting the main reflector) relative to the total power radiated by

8 See Section 2.5.2.
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Figure 9.9: Example of Cassegrain dual-reflector antenna

the feed. The total power in the aperture is equal to the total power reflected from the main
reflector.

We will in Section 9.4 factorize eap in different subefficiencies, characterizing different prop-
erties of the feed pattern. We will also give numerical values for the case that Gco45◦ (θf ) =

cosn(θf/2).

9.3 The Cassegrain antenna

The classical Cassegrain antenna consists of a paraboloidal main reflector and a hyperboloidal
subreflector. We need four independent parameters in order to uniquely describe the geom-
etry of the Cassegrain (Fig. 9.9). The most convenient ones are the main reflector diameter
D, the subreflector diameter d, the subtended half-angle θ

0
of the subreflector, and the sub-

tended half-angle Ψ0 of the main reflector. The shape of the main reflector is given by (9.31)
by replacing θf and θ0 by Ψ and Ψ0 . We will not give the equation for the subreflector
here. The paraboloidal main reflector has a primary focal point in the origin of the global
coordinate system, and the dual-reflector system has a secondary focal point, whose location
can be calculated from d, Ψ0 and θ

0
. We will not give the formula here. In a Cassegrain

antenna θ
0

is normally small (5◦ < θ0 < 30◦) and Ψ0 is large (70◦ < Ψ0 < 90◦).

9.3.1 Aperture field and efficiency

At high frequencies the Cassegrain can be analyzed approximately by aperture integration.
We assume that the feed is located with its phase reference point in the secondary focus and
has a far-field function of the form given in (9.41). Then, the aperture field is found by using
GO ray tracing from the feed via the subreflector and the main reflector to the aperture. The
result can be shown to be

Ea(ρ, ϕ) = [Eco45◦ (ρ)− Exp45◦ (ρ) cos 2ϕ]ŷ− Exp45◦ (ρ) sin 2ϕx̂ , (9.60)
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with

Eco45◦ (ρ)
Exp45◦ (ρ)

}
=

1

Feq
cos2(θf/2)

(
Gco45◦ (θf )
Gxp45◦ (θf )

)
e−jkLtot (9.61)

for θf < θ0 where Feq = D/(4 tan(θ0/2)) is called the equivalent focal length. Further, Ltot

is the total path length from the secondary focus via the two reflectors to the aperture,
e.g., measured along the central ray, and ρ = 2Feq tan(θf/2). From the form of the aperture
field it is clear that the aperture efficiency of the Cassegrain has to be given by the same
formula (9.57) as the aperture efficiency of the primary fed paraboloid.

We will in the next section factorize the aperture efficiency in different subefficiencies. In
addition, we will add center blockage to it. The center blockage effect in the Cassegrain
antenna is caused by the subreflector and in the primary-fed paraboloid by the feed.

9.4 Subefficiencies of paraboloids and Cassegrains

When characterizing a reflector antenna system with a pencil beam, it is quite common to
separate the aperture efficiency in different subefficiencies. In this section we show how this
can be done for rotationally symmetric paraboloids and Cassegrain antennas. The principle
is general and can also apply to offset and multi-reflector systems. Nevertheless, the formulas
for the different subefficiencies are different. The feed is assumed to be of BOR1 type.

9.4.1 Spillover, polarization, illumination and phase efficiencies

The first approximation of the efficiency of a paraboloid or Cassegrain antenna was already
given by (9.57), and is often referred to as the feed efficiency . This can be factorized in
several contributions [1], according to

eap = espepoleilleφ , (9.62)

where each factor is described below.

The first efficiency is the spillover efficiency esp. This is the power within the subtended
angle θ0 (i.e., the power hitting the reflector) relative to the total power radiated by the
feed. The equation for it was already given in (9.59). The relative spillover power is given
by 1 − esp. This should be reduced as much as possible in order to improve the directivity.
In addition, it is a major contributor to the antenna noise temperature, in particular if the
spillover radiation hits the hot ground9. In a paraboloid or Cassegrain antenna the spillover
efficiency is typically between −0.05 dB and −0.5 dB, depending on the illumination taper of
the aperture and the quality of the feed pattern.

The next subefficiency epol is the polarization sidelobe efficiency . This is the power of the co-
polar field relative to the total power, both within θ

0
. For circular polarization this becomes

9 See Subsection 2.5.8.



313 CHAPTER 9. REFLECTOR ANTENNAS

epol =

∫ D/2

0

|Eco45◦ (ρ)|2ρdρ/
∫ D/2

0

[|Eco45◦ (ρ)|2 + |Exp45◦ (ρ)|2]ρdρ

=

∫ θ
0

0

|Gco45◦ (θf )|2 sin θfdθf/

∫ θ
0

0

[|Gco45◦ (θf )|2 + |Gxp45◦ (θf )|2] sin θfdθf .

(9.63)

In this section we are considering ideal excitations for which the radiation field of the feed has
zero cross-polarization on axis. Therefore, this polarization sidelobe efficiency is a measure
of the power lost in cross-polar sidelobes within θ

0
. This polarization sidelobe efficiency

must not be mixed up with the polarization efficiency in Section 2.3.11, which accounts for
a non-ideal excitation of the antenna giving a cross-polar level on axis.

The polarization sidelobe efficiency for linear polarization gets a slightly different form than
that for circular polarization in (9.63). The reason is that the BOR1 type far-field function
for linear polarization has a cross-polar part with sin(2ϕ) variation, giving sidelobes in the
45◦-planes only, whereas it has ring-shaped sidelobes around the symmetry axis for circular
polarization. The polarization sidelobe efficiency ex for linear polarization is always the
highest and can be expressed in terms of epol for circular polarization, according to

ex = 1− 1

2
(1− epol) . (9.64)

It is normally not needed to differentiate between the two forms of the polarization efficiency.
It is sufficient to use (9.63) for both polarizations, and consider it as a measure of the
reduction in efficiency due to phase and amplitude differences between the E- and H-plane
far-field functions. In most reflector antennas the polarization sidelobe efficiency is very high,
typically better than −0.1 dB.

By using (9.63) as the polarization efficiency, we achieve the following illumination efficiency

eill =

∣∣∣2π ∫D/20
|Eco45◦ (ρ)|ρdρ

∣∣∣2
A2π

∫D/2
0
|Eco45◦ (ρ)|2ρdρ

= 2 cot2

(
θ

0

2

) [∫ θ0
0
|Gco45◦ (θf )| tan

(
θf
2

)
dθf

]2
∫ θ0

0
|Gco45◦ (θf )|2 sin θfdθf

,

(9.65)

with A = π(D/2)2. The illumination efficiency, eill, becomes unity for a uniform aperture
illumination, i.e., when |Eco45◦ (ρ)| = const corresponding to |Gco45◦ (θf )| = const/ cos2(θf/2).
The illumination efficiency is in a practical antenna typically between −0.4 dB and −1.5 dB,
for illumination tapers varying between 10 dB and 20 dB.

The remaining subefficiency is due to phase errors in the co-polar radiation field Gco45◦ (θf ).
This is the phase efficiency

eφ =

∣∣∣∫D/20
Eco45◦ (ρ)ρdρ

∣∣∣2[∫D/2
0
|Eco45◦ (ρ)|ρdρ

]2 =

∣∣∣∫ θ00
Gco45◦ (θf ) tan

(
θf
2

)
dθf

∣∣∣2[∫ θ
0

0
|Gco45◦ (θf )| tan

(
θf
2

)
dθf

]2 . (9.66)



9.4. SUBEFFICIENCIES OF PARABOLOIDS AND CASSEGRAINS 314

The phase efficiency is the only subefficiency which depends on the location of the phase
reference point of the feed, i.e., the location of the feed relative to the focal point of the
reflector. This fact can be used to uniquely define a phase center for the feed, corresponding
to the feed location which maximizes the phase efficiency. A formula for calculation of the
phase center will be derived from this definition to be presented in Section 9.4.3. When the
feed is located with its phase center in the focal point of the reflector, the phase efficiency
is normally very high, typically better than −0.1 dB. If the co-polar far-field function has
constant phase, the phase efficiency is 0.0 dB.

9.4.2 Example: cosn(θf/2) feed

In order to illustrate the significance of the different subefficiencies it is convenient to use a
theoretical radiation pattern as an example. Let us therefore assume that

Gco45◦ (θf ) = cosn(θf/2) , Gxp45◦ (θf ) = 0 , (9.67)

which describes the shape of the main lobe of the most common feed patterns by choosing n
such that, e.g., the 10 dB tapers of (9.67) and of the actual feed pattern are equal. Thus, n
can be calculated from

n = |A
0
|
dB
/(−20 log(cos(θ

0
/2))) ,

where |A0 |dB = −20 log(|A0 |) is the amplitude taper A0 in dB of the actual feed pattern at θ0 ,
i.e.,

A
0

= Gco45◦ (θ
0
)/Gco45◦ (0) . (9.68)

This cosn(θf/2) pattern is very similar to a Gaussian beam within the 10 dB beamwidth, but
it has the advantage over the Gaussian beam that the feed efficiency integral can be solved
analytically. By using (9.57), this becomes

ef = 4 cot2(θ0/2)[1− cosn(θ0/2)]2(n+ 1)/n2 . (9.69)

Eq. (9.69) is shown in Fig. 9.10, as a function of the feed illumination taper |A0 |dB
10. It is

also common to consider the efficiency as a function of the aperture illumination taper defined
in (9.50) which is stronger than the feed taper because the space attenuation increases with
θ. For our cosn(θf/2) feed pattern the aperture taper becomes

Aap = A0 cos2(θ0/2) .

We see in Fig. 9.10 that higher feed efficiencies are available in Cassegrain systems (small
θ

0
) than in primary-fed paraboloids (large θ

0
). The highest feed efficiency is about −0.9 dB,

and appears for 10 dB feed illumination taper in a Cassegrain antenna. Higher efficiencies are
available with improved feed designs11.

The spillover efficiency for the same feed pattern becomes

esp = 1− cos2n+2(θ
0
/2) ≈ 1− (A

0
)2 , (9.70)

where the approximation is valid for θ0 < 30◦. The most accurate formula is plotted as
a function of the feed illumination taper in Fig. 9.10. Thus, in a Cassegrain with −10 dB

10 There exist Matlab code for all figures of which the caption start with ?.
11 Shaped reflectors can also be used.



315 CHAPTER 9. REFLECTOR ANTENNAS

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

F
e

e
d

 e
ff
ic

ie
n

c
y
 (

d
B

)

30252015105

Feed illumination taper (dB)

90° 60° 30°
10°

θ0=

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

S
p

ill
o

v
e

r 
e

ff
ic

ie
n

c
y
 (

d
B

)

30252015105

Feed illumination taper (dB)

90°
60°

30°

10°

θ0=
θ0 is subtended half angle

Figure 9.10: ?Feed efficiency and spillover efficiency for the theoretical feed pattern cosn(θ/2) when
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illumination taper the spillover efficiency is about 90 % whereas it is 99 % if the taper is 20 dB.
The illumination efficiency can be found by dividing (9.69) with (9.70). It becomes almost
equal to the spillover efficiency when the taper is 10 dB.

The cross-polar feed pattern Gxp45◦ (θf ) is half the difference between the E-and H-plane
patterns. It is very sensitive to phase differences between them. If we assume that the
E- and H-plane patterns have ideal phase centers which are separated by 2δ, and that the
patterns otherwise are equal, we may write

G
E

(θf ) = cosn(θf/2)ej2kδ sin2(θf/2) , (9.71)

G
H

(θf ) = cosn(θf/2)e−j2kδ sin2(θf/2) , (9.72)

where k = 2π/λ is the wavenumber. This gives

Gco45◦ (θf ) = cosn(θf/2) cos(2kδ sin2(θf/2)) , (9.73)

Gxp45◦ (θf ) = j cosn(θf/2) cos(2kδ sin2(θf/2)) . (9.74)

We can get some simple and useful results if we approximate cos2n(θf/2) by

|G
H

(θf )|2 = |G
E

(θf )|2 = 1− (1−A2
0
)(θf/θ0

)2 for θf < θ
0
, (9.75)

where A0 = |GE (θ0)/GE (0)| is the feed illumination taper. Then, when θ
0

is small and
2kδ sin2(θ0/2) � π/2, it is possible to derive analytical expressions for the maximum of the
cross-polar pattern Gxp45◦ (θf ). The maximum is found to appear for

θm = θ0

√
(2/[3(1−A2

0
)]) , (9.76)

for which the co-polar level is

|Gco45◦ (θm)/Gco45◦ (0)|2 = 1/3 (i.e., −5 dB) , (9.77)

and the maximum cross-polar sidelobe level becomes

|Gxp45◦ (θm)/Gco45◦ (0)|2 ≈ (∆φ
0
)2/27 , (9.78)

where ∆φ0 is the difference in radians between the phases of the E- and H-plane radiation
patterns for θf = θ0 , i.e., ∆φ0 = 4kδ sin2(θ0/2) from (9.71) and (9.72). This means that
the maximum of the cross-polar sidelobe appears where the co-polar field is about 5 dB

lower, if the cross-polarization is caused by different phase centers in E- and H-planes. Also,
from (9.78), we see that in order to get a cross-polar sidelobe which is more than 30 dB lower
than the co-polar maximum, we must require that the difference ∆φ0 between the E- and
H-plane phases is less than about 10◦ for θf = θ0 .

An approximate and illustrative formula for the polarization efficiency can also be derived
when |GE (θf )|2 and |GH (θf )|2 are given by (9.75). With the same assumptions which were
used to obtain (9.76)-(9.78), we obtain

epol ≈ 1− (∆φ
0
)2/24 , (9.79)

for illumination tapers of 10 dB or more, and

epol ≈ 1− (∆φ
0
)2/12 , (9.80)



317 CHAPTER 9. REFLECTOR ANTENNAS

for a uniform illumination. We see that the polarization efficiency is higher than 99 % if the
maximum of the cross-polar sidelobe is more than 20 dB lower than the main lobe. In fact,
by comparing (9.78) and (9.79) we see that for a tapered illumination we have the following
approximate relation between the polarization efficiency epol and the maximum cross-polar
sidelobe

epol ≈ 1− |Gxp45◦ (θm)/Gco45◦ (0)|2 . (9.81)

Therefore, if the maximum cross-polar sidelobe is 20 log |Gxp45◦ (θm)/Gco45◦ (0)|2 = −20 dB, the
polarization efficiency is about 99 %, i.e., −0.05 dB. Thus, the polarization efficiency is very
high for normal cross-polar sidelobe levels.

9.4.3 Phase center

The phase center is the location of the phase reference point which minimizes the phase
variations of the co-polar far-field function Gco45◦ (θf ) over a specified angular region. A
simple formula to calculate the phase center was given in Section 2.3.7. This is valid if the
phase of Gco45◦ (θf ) is nearly constant when referred to the phase center. However, in practice
the phase of Gco45◦ (θf ) will never be constant, so we introduce an exact definition of it, as the
phase reference point which maximizes the phase efficiency in (9.66). This definition is valid
for feeds in paraboloids and Cassegrain antennas, and we will use it to derive an expression
for calculation of its location [2]. First, we write ηφ in a form which makes it more convenient
for maximization. We introduce

Gco45◦ (θ) = |Gco45◦ (θ)|ejφ(θ) ; Gco45◦δ(θ) = |Gco45◦ (θ)|ejφδ(θ) , (9.82)

where φδ(θ) = φ(θ)− kδ cos θ (9.83)

is the phase function when the phase reference point is moved to z = δ (See (2.51)). We
assume small phase errors, i.e.,

φδ(θ)− φδ(0)� π

2
(9.84)

and get by Taylor expansion of the phase factor

eφδ = 1− (φ2
δ) + (φδ)

2 , (9.85)

where φδ and (φ2
δ) are the mean and the mean-square phase errors, respectively, given by

φδ =

∫ θ
0

0

w(θ)[φδ(θ)− φδ(0)]dθ/

∫ θ
0

0

w(θ)dθ , (9.86)

(φ2
δ) =

∫ θ
0

0

w(θ)[φδ(θ)− φδ(0)]2dθ/

∫ θ
0

0

w(θ)dθ , (9.87)

where the weight is
w(θ) = |Gco45◦ (θ)| tan(θ/2) . (9.88)

An alternative and equal expression is

eφδ = 1− (φδ − φδ)2 , (9.89)
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where (φδ − φδ)2 =

∫ θ0

0

w(θ)[φδ(θ)− φδ]2dθ/
∫ θ0

0

w(θ)dθ (9.90)

is the mean-square phase error around the mean phase error.

By substituting (9.83) into (9.86) and (9.87), we can write (9.85) as a function of kδ as

eφδ = c− 2bkδ − a(kδ)2 , (9.91)

where

c = 1− Iwφ2

Iw
+

(
Iwδ
Iw

)2

, b =
Iwφc

Iw
− IwφIwc

I2
w

, a =
Iwc2

Iw
−
(
Iwc

Iw

)2

,

with Iw =

∫ θ0

0

w(θ)dθ , Iwc =

∫ θ0

0

w(θ)[cos θ − 1]dθ ,

Iwc2 =

∫ θ0

0

w(θ)[cos θ − 1]2dθ , Iwφ =

∫ θ0

0

w(θ)[φ(θ)− φ(0)]dθ ,

Iwφ2 =

∫ θ
0

0

w(θ)[φ(θ)− φ(0)]2dθ and Iwφc =

∫ θ
0

0

w(θ)[cos θ− 1][φ(θ)− φ(0)]dθ .

Eq. (9.91) has a simple dependence on δ and can easily be maximized. The result δ = δ0 ,
which we define as the phase center, becomes

kδ
0

=
b

a
=
IwIwφc − IwφIwc

Iwc2Iw − (Iwc)2
. (9.92)

The phase center, as defined here, is a function of the subtended angle θ
0
. The corresponding

maximum phase efficiency is

(eφδ)max = c+
b2

a
. (9.93)

The above formulas assume small phase errors. If they are not small, we may first calculate
an approximate phase center by using (2.63), transform the phase reference point to this
location, and thereafter use the above formulas.

9.4.4 Axial displacements of feed

For small axial displacements of the feed around the phase center δ
0
, we can rewrite (9.91)

in the following form
eφδ = (eφδ)max − a[k(δ − δ0)]2 . (9.94)

This equation can be used to find the required axial tolerances of the feed position. Let
us define the tolerance ±∆δ as the displacement, causing an efficiency reduction of 0.1 dB,
corresponding to eφδ = 0.977(eφδ)max. This gives from (9.94)

k∆δ = 0.151

√
1

a
(eφδ)max . (9.95)

From (9.91) we find that it is independent of the phase pattern φ(θ). It is therefore illustrative
to elaborate (9.94) and (9.95) with an example. We consider a theoretical feed of the form
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cosn(θ/2), evaluate a numerically, and present results as function of the feed illumination taper
cosn(θ0/2) for (eφδ)max = 1 in Fig. 9.11 and Fig. 9.12?. We see that ∆δ depends strongly on
the subtended angle θ

0
, and is almost independent of the feed taper. In Cassegrain antennas

(θ0 < 30◦) we can displace the feed by several wavelengths before any defocussing appears,
whereas in deep primary-fed paraboloids (θ0 ≈ 90◦) the feed needs to be located with its
phase center within fractions of a wavelength from the focal point.

The analytical results are rather complicated expressions, and are therefore not given here.
A useful analytic approximation (except for θ0 ≈ 90◦) for the phase center tolerance is

∆δ/λ = 0.045/ sin2(θ
0
/2) . (9.96)

9.4.5 Surface tolerances

The aperture efficiency is also reduced due to the finite surface accuracy of the reflector.
This causes phase errors, and the corresponding efficiency reduction can be accounted for by
using (9.85) with (see Fig. 9.13)

φ(θ, ϕ) = (1 + cos θ)k∆z(θ, ϕ) ≈ 2k∆z(θ, ϕ) , (9.97)

with ∆z(θ, ϕ) is the surface error. We see that (9.85) becomes

etot = 1− (2k∆zrms)
2 ; ∆zrms =

√
(∆z)2 − (∆z)2 (9.98)

is the weighted Root Mean-Square (RMS) of the surface error around the mean surface error
∆z. For less than 0.3 dB loss we need a RMS surface accuracy better than ∆zrms = λ/50.
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Figure 9.13: Illustration of surface errors.

Some surface errors may increase quadratically towards the reflector rim. If this is the case,
the maximum acceptable error at the rim is four times the RMS error. The effects of reflector
tolerances on the directivity and radiation pattern was first studied by J. Ruze in the classic
paper [3].

9.4.6 Aperture blockage

In rotationally symmetric antennas the feed or the subreflector and their support struts will
cause aperture blockage (see Fig. 9.8). We will here only treat center blockage from the feed
and the subreflector, and refer to [4] for strut blockage. The center blockage can be accounted
for in the efficiency calculations by a center blockage efficiency , which is obtained by removing
the central region from the aperture integral. By doing this for the total aperture efficiency
(see (9.56)) we obtain

(eap)b = |Ẽayb(0, 0)|2/(PA) , (9.99)

with Ẽayb(0, 0) = 2π

∫ D/2

d/2

Eco45◦ (ρ)ρdρ , (9.100)

where d is the blockage diameter. We may express (9.100) as

Ẽayb(0, 0) = Ẽay (0, 0)− 2π

∫ d/2

0

Eco45◦ (ρ)ρdρ , (9.101)

where Ẽay (0, 0) is the unblocked aperture integral in (9.54). Therefore, we see that the
aperture efficiency (eap)b with blockage may be expressed as

(eap)b = eap|1−∆cb|2 , (9.102)

where ∆cb =

∫ d/2

0

Eco45◦ (ρ)ρdρ/

∫ D/2

0

Eco45◦ (ρ)ρdρ . (9.103)

If we assume that d� D and Eco45◦ (ρ) ≈ constant for 0 < ρ < d/2, and if we introduce (9.54),
we get

∆cb = Cb(d/D)2 , (9.104)
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with Cb =
Eco45◦ (0)

2
∫ 1

0
Eco45◦ (uD/2)udu

=
tan2(θ0/2)Gco45◦ (0)∫ θ

0

0
Gco45◦ (θf ) tan(θf/2)dθf

. (9.105)

If we use the same cosn(θf/2) feed pattern as before, the blockage constant becomes

Cb =
tan2(θ0/2) · n

2(1− cosn(θ
0
/2))

. (9.106)

The aperture blockage efficiency |1−∆cb|2 is evaluated from the above formulas and plotted in
Fig. 9.14?. The aperture taper is provided by a feed pattern of cosn(θf/2) shape by choosing
the value of n appropriately. A common choice of d/D in a Cassegrain antenna is d/D = 0.1.
Then, we see that the blockage efficiency varies between −0.15 dB and −0.3 dB for aperture
tapers between 10 dB and 20 dB.

If d/D is larger than 0.1, the above equations will not be accurate. The reason is that the
blocked power becomes significant. This is neglected in the above analysis. But in reality,
it will be reflected by the blocking element (the feed or the subreflector) back towards the
main reflector where it is reradiated and may cause multiple reflections and standing waves
between the blocking element and the main reflector. These multiple reflections will effect
the radiation on axis very differently at different frequencies. It is, however, possible to use
them constructively to improve an antenna [5].

Aperture blockage will also cause increased sidelobes of the antenna. These can be calculated
by subtracting the far-field function of the blocked region from the far-field function of the
unblocked aperture, in a similar way as for the efficiency reduction.

9.4.7 Edge diffraction efficiency

The field incident on the main reflector of the Cassegrain is reflected by GO from the sub-
reflector. GO is only valid when the reflectors are large in terms of wavelengths. The finite
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diameter of the subreflector will therefore cause edge diffraction losses. In order to keep these
losses as small as possible, the subreflector must have a diameter d < 10λ/ sin(Ψ0), where Ψ0

is the subtended half angle of the paraboloid, as defined in Fig. 9.9. This can easily be seen
from the formulas in the following text.

We will give an asymptotic formula for a combined edge diffraction and blockage efficiency
eb+d [6] which is derived by using the uniform geometry of diffraction (see reference [29] in
Chapter 1 of this textbook). The total aperture efficiency is

eaptot
= eapeb+d , (9.107)

where eap is the previous aperture efficiency in (9.62) and

eb+d = |1−∆cb −∆d|2 (9.108)

where the blockage term ∆cb is the same as in (9.104), and the diffraction term

∆d = (1− j)Cd
√

λ

d sin Ψ
0

√
1− d

D
A

0
, (9.109)

with D the main reflector diameter, d the subreflector diameter, A0 the aperture illumination
taper (amplitude), and

Cd =
1

π
cos2(θ

0
/2)Cb . (9.110)

Some results based on these formulas are presented in Fig. 9.15?. It is possible to differen-
tiate (9.108) with respect to d/D in order to determine the d/D ratio which maximizes the
efficiency. This optimum d/D is used to generate the results in Fig. 9.15a.The result of such
a differentiation gives (d/D) ≈ 0.05 for most practical antenna sizes. For small main reflector
diameters it may be necessary to increase this in order to illuminate the subreflector prop-
erly with as small spillover as possible, but we should not use (d/D) > 0.10. Then, multiple
scattering effects may dominate over blockage and diffraction losses.

9.4.8 Example: Corrugated feed horn for Cassegrain antenna

We consider a classical Cassegrain antenna with 20 m diameter for operation at 8 GHz with
an expected aperture efficiency of −1 dB (80 %) when aperture blockage is not accounted for.
The subtended half angle seen from the focal point towards the subreflector is 15◦.

a) Determine the expected directivity when blockage is not accounted for.

b) Use the expected aperture efficiency to determine the length and diameter of the shortest
conical corrugated horn which can feed the Cassegrain.

c) Find where to locate the horn relative to the focal point of the Cassegrain.

SOLUTION:

a) The directivity becomes (λ = 30/8 = 3.75 cm):

(D0)dBi = eap

(
πD

λ

)2

= 0.8

(
π · 2000

3.75

)2

= 63.51 dBi .
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b) For a Cassegrain θ
0

is normally small, so that the aperture illumination taper becomes
equal to the feed illumination taper. Then, to get −1 dB efficiency we need a taper of about
11 dB (see Fig. 9.10). The aperture taper is for quite small subtended angles equal to the
feed taper. The shortest possible horn which can provide this is a maximum gain horn, see
Section 8.9.5. We can use (8.84) to determine the length L of the horn, with T = −11 dB and
θ = 15◦ = 0.2618 rad, i.e.,

L = −0.07
(−11)

(0.2618)2
λ = 11λ = 41 cm.

The horn diameter is determined from L = 1.1a2/λ, i.e.,

Dhrn = 2a = 2

√
λL

1.1
= 2
√

10λ = 6.3λ = 23.6 cm .

c) The phase center of a maximum gain horn is located at Zpc = −L/2 from the aperture.
This must coincide with the focal point of the Cassegrain.

9.5 Other reflector shapes

Modern reflector antennas have often surfaces that are shaped in order to provide a desired
radiation pattern. They may be shaped to maximize the gain, reduce the sidelobes in par-
ticular regions or to generate a contoured beam. The art of designing shaped reflectors is
referred to as reflector synthesis.

The original reflector synthesis is based on solving differential equations to obtain a desired
aperture distribution, which is given from requirements on the directivity and first sidelobes
of the far-field function. The aperture distribution should e.g. be uniform with constant
phase to get the highest directivity12. The original reflector synthesis approach was to use
Geometrical Optics (GO) reflections on the subreflector and main reflector, and formulate
differential equations for two rotationally symmetric reflector surfaces [7]. This was used to
maximize gain in the large ground stations for satellite communications used in the 1980s.
The synthesis method was extended to asymmetric offset geometries in [8]-[9] in order to
reduce the sidelobes due to the center blockage, and maintain the higher aperture efficiency
and lower cross-polar sidelobes otherwise being present. A completely new approach to
the reflector synthesis was introduced in [10]-[11] in connection with the design of a dual-
reflector feed for the 300 m diameter spherical reflector of the radio-telescope in Arecibo [12].
The method made use of the laws in [13] that governs GO mapping of the far-field of the feed
onto the aperture, and the modern GO ray tracing formulations [14]. This made it possible
to avoid differential equations, and instead achieve the reflector shapes directly after the
main geometry (relative locations and diameters of the reflectors) have been specified. The
solution is done by solving repeatedly linear equations when progressing stepwise in circles
from the central ray to the rim of the reflectors.

Multi-reflector antennas can be analyzed both by GO ray tracing and PO integration. The
PO approach is more accurate, but takes long time. The results for the dual-reflector feed of

12 See Section 7.5.
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the Arecibo tri-reflector are compared in [12]. The GO analysis can be extended with UTD13.
This becomes too complicated when there are more than two reflectors. However, it can
be conveniently done by using a UTD-approach by which the width of a transition region is
traced via several reflectors [15], and finally the edge diffraction efficiency can be evaluated
in the aperture [16]. This approach is fast and shows good agreement with PO integration
approach [17]. This approach is also easily applied to offset dual-reflector systems [18], and
they correspond for the rotationally symmetric case to the edge diffraction efficiency result
in Section 9.4.7.

Reflector synthesis can also include edge diffraction [19], normally by PO integration which
is very flexible [20]. Reflector antennas for satellite applications with contoured or multiple
beams can also be achieved by synthesizing the excitation of an array of feeds [20]. The feed
can also be realized as a dense array, in which case we call it a Focal Plane Array (FPA).
The FPA described in [21] is used to form a sector beam that can illuminate the subreflector
of a Cassegrain system in such a way that the sensitivity of it improves. At the same time
multiple beams can be achieved. It is also possible to synthesize sector beams for this purpose
by using a lens in front of the horn aperture [22].

Reflector antennas can also be realized as parabolic cylinders with a linear array feed [23].
Then, diffraction efficiencies similar to those in [6] are observed due to diffraction from the
ends of the line feed [24].

9.6 Prime-focus feeds

Corrugated horns14 are normally very flexible to use as feeds for dual-reflector antennas, be-
cause the can be designed for any beam width with high performance in terms of bandwidth,
cross-polarization and sidelobes. They are heavy though. Corrugated horns are also used as
prime-focus feeds, and they can provide wide beams with constant width over almost octave
bandwidth [25]. Some more feeds and their design principles are overviewed in [26]. We will
briefly summarize them here.

The hat feed is a self-supported rear-radiating corrugated horn type feed. The design was
originally proposed in [27] for satellite-TV reception. The first successful commercial appli-
cation was for radio links [28]. The hat feed has a ring-shaped phase center, so the optimum
reflector is a ring-focus paraboloid [29]. The bandwidth was originally very small, but it
has finally reached 33 % which is very good for such a primary feed [30]. The hat feeds has
been mass produced in more than one million copies for use in radio links between 5 and
38 GHz.

Dipole feeds are practical at frequencies below 5 GHz, but the usability can be stretched to
higher frequencies. They can also be self-supported like the hat feed but requires a small
ground plane. The E- and H-plane patterns will be very different, but they can be improved
by a beam-forming ring [31]. They can also be used in small resonant reflector antennas, in
which the directivity is improved by making use of constructive resonances between the feed
and the parabolic reflector [32]. The E- and H-plane patterns of dipoles above ground plane
can also be made equal by locating two dipoles in parallel (in eleven configuration). This is

13 UTD is defined in Section 1.5.
14 Corrugated horns are treated in Section 8.9.
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used in the so called eleven antenna [33] in which also the two dipoles are realized as cascaded
log-periodic folded dipoles. The eleven antenna is a very wideband feed with constant beam
width 11 dBi directivity over more than decade bandwidth. The solution in [33] works between
2 and 13 GHz. The quad-ridge horn can also be used as a wideband feed, see reference [19] in
Chapter 8. The reference list finally contains three books on reflector antennas and physical
optics that has been important contributions [34]-[36].

9.7 Exercises to Chapter 9

1. Reflector antenna for satellite-TV: We shall now design a reflector antenna for satellite-
TV reception at 12 GHz.

a) We have a paraboloidal reflector and do not know its F/D or subtended half-angle θ0 .
Show how you can determine F/D and θ0 by measuring the diameter D and depth ∆z of the
paraboloid. Use D = 90 cm and ∆z = 15 cm.

b) Use the results in Subsection 9.4.2 to determine the optimum taper of the cosn(θ/2) feed
pattern that maximizes the aperture efficiency of the paraboloid. What is the taper of the
aperture distribution?

c) How large will the aperture of a TE11 mode conical horn feed be in order to provide this
illumination taper?

d) The actual feed pattern has sidelobes outside the first null in the pattern. The sidelobes
are measured to be 18 dB lower than the main lobe. Assumed that this feed pattern can be
modeled as

G(θ) =

{
cosn(θ/2) 0 < θ < θa

a θa < θ < π
,

where 20 log cosn(θa/2) = 20 log |a| = −21 dB. In this way the −18 dB sidelobes are modeled
as a uniform level of −21 dB from the −21 dB level of the main lobe and out to 180◦. How
much will these sidelobes reduce the spillover efficiency (in dB), and how much will the feed
efficiency decrease? (Assume θ0 < θa)

2. Design of Cassegrain antenna: Consider now a Cassegrain antenna with subtended half-
angle of the subreflector of θ0 = 15◦. We want to feed it with a circular corrugated horn
antenna at 12 GHz.

a) Assume that the horn has a cosn(θ/2) feed pattern and find the feed efficiency when the
illumination taper is 20 dB. This strong taper is chosen to achieve low sidelobes.

b) Use the universal radiation pattern for conical corrugated horns to determine the diameter
of the horn? Is this horn aperture-controlled or flare angle-controlled? What is the length of
the horn, if we require that the maximum phase error in the plane aperture should be less
than 45◦?

c) Use design curves for the Gaussian beam model of corrugated horns to determine the length
of the shortest horn that can provide the 20 dB taper at 15◦?

d) There is a dielectric lens across the aperture of the horn in order to make the phase front
plane. However, this lens increases the sidelobe level of the horn due to reflections in the lens.
Assume that the sidelobe level is uniform at −25 dB relative to the main lobe maximum, from
the −25 dB point of the cosn(θ/2) pattern and out to 180◦. Use the same form of the feed
pattern as in Exercise 1-d, with 20 log cosn(θa/2) = 20 log |a| = −25 dB. How much will now
the aperture efficiency decrease due to the added spillover?

e) The Cassegrain antenna has a diameter of about 10 m. What are the approximate relative
sidelobe levels (relative to the main beam maximum) due to feed spillover, and in which
angular region do they appear?
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f) The phase center of the co-polar radiation pattern of the feed is measured when the feed is
mounted on the measurement table with the z-position of its aperture over the rotation axis of
the measurement table. The measured phase is proportional to θ2

f with a φ(θ0)−φ(0) = −360◦

where θ0 = 15◦. Where is the location of the phase center of the feed? Use the Gaussian beam
approximation of the horn.

3. Aperture efficiency formula: Derive the expression for the aperture efficiency in (9.69)
and the blockage constant in (9.106), for the theoretical cosn(θ/2) feed pattern.
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Chapter 10

Array antennas

Until now we have only considered single antennas or at the maximum two neighboring
antennas or an antenna and its image in a ground plane. In the present chapter, we show
how to analyze several interfering antennas, i.e., an array antenna. The chapter is mainly
devoted to linear arrays.

If antennas with large directivity are needed, they must have apertures which are large in
terms of wavelengths. High gain antennas can conveniently be realized as reflector antennas,
but arrays are often preferred because they can be flat and thereby occupy less space than
a reflector. Another advantage of an array is that the main beam direction can be rapidly
changed by electronic steering of the phase of each element in the array. It is also possible
to control the shape of the beam by steering the phase. The best radiation pattern control
is obtained by steering both the phase and amplitude of each element (Fig. 10.1). Even
multiple beams can be created. Full flexibility is obtained in a so-called signal processing
antenna with digital beam-forming capability. The elements of an array may be located with
a spacing which is different for different positions in the array, but the most common is to
use a uniform spacing. This book only treats arrays with uniform element spacing.

The disadvantage of the array solution is that it is normally much more expensive to de-

connectors for connection to power distribution

or combination network, or to individual amplifiers

and phase shifters.

Figure 10.1: Linear array of dipoles where each element can be fed individually with different
amplitude and phase.
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sign and manufacture than a reflector antenna, in particular if fast steering of the beam or
other forms of beam-control are required. It has also normally narrower bandwidth than a
reflector.

Arrays can be linear, planar or conformal. In linear arrays the elements are located along
a straight line, in planar arrays they are distributed over a plane surface, and in conformal
arrays they are distributed over and conform to a single or double curved surface. Other
configurations are also possible. A planar array can often be considered as a linear array of
linear arrays, so the theory of linear arrays is valid also for planar arrays.

An array antenna can be designed for full scan or limited scan. Full scan means normally
±60◦ or more from broadside, whereas limited scan can be anything smaller than this. The
full scan capability is difficult to obtain, and requires that the elements are located as close
as half a wavelength from each other.

The elements of an array may be of any type. The most popular elements are dipoles,
waveguide slots, microstrip patches, open waveguides or horns. Big reflector antennas may
also be located in an array, such as in certain radio telescopes. Then, the reflector antenna
elements will be movable relative to each other, so that the ambiguity due to multiple main
lobes (also called grating-lobes) can be removed by repeated measurements for different
antenna spacings. Such array systems are referred to as interferometers.

The elements of an array may be fed individually from a power distribution network (or
beam-forming network) (Fig. 10.2, right). The elements of a linear array can also be fed in
series from the same transmission line, such as a waveguide or a microstrip line (Fig. 10.2,
left). In this latter case, we distinguish between three different types of arrays (Fig. 10.3);
the resonant array, the travelling wave array and the leaky wave array:

a) In the resonant array the transmission line is short-circuited at the end such that a
standing wave is formed along the transmission line. The elements of the array are all equal,
weakly coupled to the line, and located at each standing wave peak. The resonant array is
easy to design and the main beam is always broadside.The return loss at the input of the
transmission line can be tuned to a low value by a matching network (e.g., irises or screws)
at the input to the transmission line, but the bandwidth of the return loss becomes narrow.

b) In the travelling wave array the transmission line is terminated with a matched dummy
load at its end in order to avoid the standing wave. The first elements are weakly excited
whereas the last elements are strongly excited, in order to minimize the power absorbed in the
dummy load. The travelling wave array has better return loss bandwidth than the resonant
array. In addition the main beam can be designed to point in any direction. However, the
pointing direction will change with frequency.

c) Several elements along a transmission line may also be designed as a leaky wave antenna.
In this case the element spacing is smaller than a half wavelength. The elements work as a
periodic perturbation of the transmission line and cause a change in the propagation constant
along the line.

The present analysis will be based on the so-called isolated element approach [1, p. 424].
This means that the shape of the electric or magnetic current distribution of each antenna
element is independent of how the element is excited, i.e., the current distribution function is
the same when the element is excited via mutual coupling as when it is excited by a terminal
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Figure 10.2: Series-fed (left) and parallel-fed (right) linear microstrip patch arrays.

voltage or current. This is true only for single mode antenna elements such as half-wave
dipoles, slots, patches and open basic mode waveguides.

In these antennas, the shape of the current distributions or the aperture field distributions
do not depend on the surroundings.

10.1 Linear array of equispaced elements

Consider N equispaced and equal antenna elements which are oriented in the same direction
and located with their individual phase reference points at

rn = rc + anâ = rc +

(
n− N + 1

2

)
daâ for n = 1, 2, ..., N , (10.1)

where rc = (rN + r1)/2 is the geometrical center of the array, â is a unit vector defining the
direction of the array axis, and da is the element spacing (Fig. 10.4). We choose to define
the total length L of the array by extending it to a da/2 length outside the first and the last
element, so that

L = Nda . (10.2)

The far-field function of element number n at a point r is

En(r) =
1

r
e−jkrG(r̂)ejkrn·r̂ , (10.3)

where G(r̂) is the far-field function when referred to the phase reference point rn of the
element, and where G(r̂)ejkrn·r̂ is the far-field function when referred to the origin of the co-
ordinate system of the whole array antenna. The latter is easily obtained by using Eq. (2.52)
to move the phase reference point from rn to the origin, i.e., by using rA = rn.

10.1.1 Array factor as an element-by-element sum

From (10.1)-(10.3) by using superposition the far-field function of the whole array becomes

G
A

(r̂) =

N∑
n=1

Ane
jΦnG(r̂)ejkrn·r̂ , (10.4)
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(b) Travelling wave array designed for

 broadside beam
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radiation direction not broadside

Figure 10.3: Examples of linear waveguide slot array: resonant, travelling wave and leaky wave
types.

where An is the amplitude and Φn is the phase of the current or voltage excitation of element
number n. If we assume that all elements are identical and have the same far-field function,
this can be written more conveniently as 1

G
A

(r̂) = G(r̂)AF(r̂) , (10.5)

where

AF(r̂) =

N∑
n=1

Ane
jΦnejkrn·r̂ (10.6)

is referred to as the array factor being expressed as an element-by-element sum. Thus, the
far-field function of an array of equal and co-oriented elements is the product of the element

1 This formulation is correct if G(r̂) is the embedded far-field function of an element, and all elements
have identical embedded far-field functions. In practice this is the case for elements of large regular arrays,
except for the outer two rows of elements.
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Figure 10.4: Geometry of equispaced linear array (upper), and illustration of element excitations
and the excitation distribution (lower).

factor (i.e., the far-field function of the element) and an array factor. The element-by-element
sum can readily be evaluated for small arrays2, but for large arrays is becomes time-consuming
and gives also little understanding of how arrays work. Therefore, we will also introduce the
infinite grating-lobe sum, which is better in this respect, see Subsection 10.1.3.

10.1.2 Array factor for uniform amplitude and linear phase

We assume now that all elements have the same amplitude excitation, i.e., An = A. Further-
more, we assume that the phase excitation (in radians) progresses linearly along the array
according to

Φn = Φc −
(
n− N + 1

2

)
kΦda with kΦ = −∆Φ/da , (10.7)

where ∆Φ in radians is the phase difference between neighboring elements, and Φc is a
constant phase offset3. It is important always to choose ∆Φ in the domain −π < ∆Φ < π,

2 There exist Matlab code for all figures of which the caption start with ?.
3 This corresponds to the phase at the geometrical center rc of the array.
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otherwise the main beam will appear as a grating-lobe in the equations below. The kΦ

represents a propagation constant for the phase progression along the array. The array
factor becomes

AF(r̂) = Aej(Φc+krc·r̂)
N∑
n=1

ej(n−
N+1

2 )∆Ψ , (10.8)

where we have ∆Ψ = (ka − kΦ)da with

ka = kâ · r̂ = k cosα (10.9)

the product of k and the projection of the observation direction r̂ along the direction â of the
array. The α is the angle between r̂ and â and defines a cone around â. The sum expression
is a geometrical series and can be summed by using a standard formula. The result is

N∑
n=1

ej(n−
N+1

2 )∆Ψ = e−j(
N−1

2 )∆Ψ (ejN∆Ψ − 1)

(ej∆Ψ − 1)
=

sin(N∆Ψ/2)

sin(∆Ψ/2)
. (10.10)

This finally gives

AF(r̂) = A ·N sin(N(ka − kΦ)da/2)

N sin((ka − kΦ)da/2)
ejkrc·r̂ejΦc . (10.11)

The array factor of an array with length L = Nda and ∆Φ = 0 is plotted in Fig. 10.5? for
different number of elements N . For large N , it approaches the main lobe and near-in sidelobe
characteristics of the sinc funtion4

sin(N(ka − kΦ)da/2)/(N(ka − kΦ)da/2) .

Eq. (10.11) will be studied carefully in Subsections 10.1.3 to 10.1.8. However, we will first
introduce an alternative expression for the array factor in which we make use of Fourier
transforms, in the same way as we did when analyzing straight wire antennas and plane
apertures.

10.1.3 Array factor as a grating-lobe sum

The element-by-element sum expression for the array factor in (10.6) is valid for any ampli-
tude An and phase φn excitation of the array. We will now derive an alternative sum expres-
sion for the array factor, which also is valid for any An and φn. The alternative expression
will be referred to as an infinite grating-lobe sum and is obtained by a Fourier transform of
a smooth and continuous excitation distribution A(a) which represent the distribution of An
along the array. In order to do this we define the element locations by r(an) = rn where r(a)
is a continuous function over the interval −L/2 < a < L/2 defined by (see Fig. 10.4)

r(a) = rc + aâ . (10.12)

The continuous variable a takes on the following values at the element locations:

an = −(L/2) +

(
n− 1

2

)
da for n = 1, 2, ..., N . (10.13)

4 See Section 7.4.3.
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Figure 10.5: ?Universal radiation pattern representing the array factor for a uniformly excited linear
array of length L = Nda. The parameter is the number of elements N . The solid curve represent
an infinite number of elements distributed along L, corresponding to a uniform continuous aperture
distribution.

We see that r(−L/2) and r(L/2) define the ends of the array (see Fig. 10.4). We then define
A(a) to be smooth and continuous within |a| < L/2 and to take on the values

A(a) =

{
An for a = an , n = 1, 2, ..., N
0 for |a| > L/2

. (10.14)

Similarly, we introduce Φ(an) = Φn in (10.7) with

Φ(a) = Φc − kΦa . (10.15)

Eq. (10.15) describes a pure linear phase variation along the array, which may look like a
restriction. However, if the actual phase variation is more complex, we may include the
remaining phase variation in A(a) by defining An as complex constants. By using the above
equations and the sampling properties of the delta function, we can write the general array
factor in (10.6) in terms of A(a) as follows

AF(r̂) = ejkr̂·rcejΦc
N∑
n=1

{∫ ∞
−∞

A(a)e−jkΦaδ(a− an)ejkaada

}
. (10.16)

We now interchange the integral and summation signs and obtain

AF(r̂) = ejkr̂·rcejΦc
∫ ∞
−∞

A(a)ej(ka−kΦ)a
∞∑

n=−∞
δ(a− an)da . (10.17)

We have here changed the summation boundaries from (1, N) to (−∞,∞). This is allowed
because A(a) is zero for a < −L/2 and a > L/2, which corresponds to n < 1 and n > N ,
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respectively. The sum of delta functions in (10.17) forms a periodic function with period da,
so we can expand it in a Fourier series with exponential terms of the form e−jp2(π/da)a for
p = −∞, ..., 0, ...,∞. All the coefficients of the Fourier series become 1 when N is odd (i.e.,
when the center rc coincides with an element), and every second coefficient become +1 and
−1 when N is even (i.e., when the center rc is halfway between two elements). Therefore,
the following formula containing N is valid for both these cases (this is called the Poisson
summation formula);

∞∑
n=−∞

δ(a− an) =
1

da

∞∑
p=−∞

(−1)p(N−1)e−jp(2π/da)a . (10.18)

Inserting this into (10.17) and interchanging the summation and integral signs again give

AF(r̂) = ejkr̂·rcejΦc
1

da

∞∑
p=−∞

(−1)p(N−1)Ã

(
ka − kΦ + p

2π

da

)
, (10.19)

where ka = k cosα, and where

Ã(ka) =

∫ ∞
−∞

A(a)ejkaada =

∫ L/2

−L/2
A(a)ejkaada , (10.20)

is the Fourier transform of the amplitude excitation distribution A(a) which is zero outside
the interval −L/2 < a < L/2.

Thus, by (10.19) and (10.20) we have expressed the array factor in terms of the Fourier
transform of the continuous amplitude excitation distribution. This is related to the results
of previous chapters as follows:

1. The far-field function of the straight wire5 was found to be the product of the Fourier
transform of the current distribution and the far-field function of the incremental elec-
tric current.

2. The far-field function of the rectangular aperture6 was found to be the product of the
Fourier transform of the E-field aperture distribution and the far-field function of either
an incremental magnetic current or a Huygens source.

3. Presently, we have shown that the far-field function of a linear array is a product of
the far-field function of the array element and a factor which is a sum of displaced
Fourier transforms of the amplitude excitation distribution, each one centered around
an interference maximum which we7 will refer to as a grating-lobe.

Thus, the present periodic excitation distribution has caused an infinite sum of displaced
Fourier transforms, each one describing the shape of the array factor around a direction
corresponding to ka = kΦ − p(2π/da). The alternative sum expression for the array factor
in (10.19) may be named an infinite grating-lobe sum. For infinite arrays it corresponds to
what is called a sum over Floquet modes. The formula in (10.19) has been obtained from (10.6)
without approximations, but it is only valid for a linearly progressive phase excitation. For
instance, when A(a) is uniform, (10.19) gives exactly the same result as (10.11), but the two

5 It is given in Section 5.1.3.
6 See Sections 7.3 and 7.4.
7 For more information see Section 10.1.5.
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formulations have completely different form. The advantage of (10.19) compared to (10.11)
is that (10.19) is valid for any amplitude excitation distribution. The advantage with the
infinite grating-lobe sum in (10.19) compared with the element-by-element sum in (10.6) is
that Eq. (10.19) is much faster to evaluate for large arrays, i.e., when the number of array
elements is large. The infinite sum in (10.19) converges very fast for large arrays (large N).
Often only the dominant p = 0 term or the two terms for which p = 0 and p = 1 (or p = −1)
need to be included. In the next sections we will study both (10.11) and (10.19).

The excitation distribution will most often be a real function with some taper at the ends
a = ±L/2. If so, the Fourier transform Ã(ka) will have a maximum for ka = 0. If A(a) = 1,
we achieve the sinc function

Ã(ka) = L
sin(kaL/2)

kaL/2
, (10.21)

which is the same as the curve marked N = ∞ in Fig. 10.5. The characteristics of this
radiation pattern is given in Section 7.4.3. For tapered excitations Ã(ka) will have lower
sidelobe levels. An example of a tapered excitation is given in Section 7.5.3.

10.1.4 Steered main lobe

If we only include the p = 0 term in (10.19), the array factor has the form

AF(r̂) ≈ ejkrc·r̂ejΦc 1

da
Ã(k cosα− kΦ) .

This has a maximum when ka = k cosα = kΦ, i.e., when

r̂ · â = cosα0 = kΦ/k = −∆Φ/(kda) , (10.22)

where α
0

defines a cone around the â axis. If we align the array with the z-axis so that â = ẑ,
we see that this corresponds to

cos θ
0

= kΦ/k = −∆Φ/(kda) , (10.23)

where ∆Φ in radians is the phase progression from element to element, see (10.7). The special
array factor in (10.11) has a maximum for the same angle.

The lobe around this p = 0 direction is the main lobe or main beam. We see that we can
steer the main lobe by changing the phase progression ∆Φ along the array. When ∆Φ = 0

we have α0 = 90◦. This is referred to as a broadside array because it radiates normal to the
array axis, see the left drawing in Fig. 10.6. When ∆Φ = −kda = −2πda/λ, we have α0 = 0◦.
This is referred to as an endfire array . It radiates along the array axis as shown in the right
drawing in Fig. 10.6. A condition for endfire radiation is that the element pattern is not zero
in that direction.

According to (10.5), the ϕ-variation of the radiation field on the α
0

cone will be determined
by the far-field function of the elements, i.e., the element factor.

10.1.5 Graphical representation of array factor

The array factors in both (10.11) and (10.19) are functions of ka = kr̂ · â. The ka is constant
on a cone around the array axis defined by r̂ · â = cosα where α is the angle between the
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â

broadside phase-steered endfire

α0 =60α0 =90 α0 =0

â

â α0

Figure 10.6: Illustration of main beam cone for broadside array α0 = 90◦, phase-steered array with
α0 = 60◦, and endfire array α0 = 0◦.

vectors â and r̂. If we locate the array along the z-axis we get â = ẑ and cosα = cos θ, with
θ the polar angle in the spherical coordinate system. If we locate the array along the x-axis
(or y-axis) we get â = x̂ (or â = ŷ) and cosα = sin θ cosϕ (or cosα = sin θ sinϕ).

It is convenient to represent the array factor in a diagram as a function of ka or preferably as a
function of cosα (Fig. 10.7a?). The functions are most conveniently normalized to a maximum
of unity when α = α0 . The curves can conveniently be extended outside −1 < cosα < 1 in
order to pick up the first maxima of |AF(cosα − cosα0)| outside these boundaries. However,
it is important to note that only | cosα| < 1 represents visible directions in the real physical
space. The region for which | cosα| > 1 is invisible. The location of the main lobe of the
array factor within | cosα| < 1 varies with the choice of α

0
, i.e., the main beam direction.

The array factor needs to be multiplied with the element factor (see (10.5) and Fig. 10.7b)
in order to obtain the total far-field function. This can conveniently be done by plotting the
normalized element factor in the same figure as the array factor (Fig. 10.7c and d). When α0

varies, the array factor is simply translated along the α-axis. The shape of the array factor
does not change with α

0
when plotted as a function of cosα. However, it is very important

to be aware that the array factor lobe widths in degrees change with α
0
. The lobes are much

wider in degrees near endfire (α = 0◦ and α = 180◦) than near broadside.

10.1.6 Grating-lobes

Let us study the two versions of the array factor in (10.11) and (10.19). The array factor
in (10.11) has its main lobe maximum at α = α0 . In addition there are maxima when

(ka − kΦ)da = −p2π for p = ±1,±2, ... . (10.24)

The m’th term in (10.19) has a maximum for the same ka, i.e., when p = m. Eq. (10.24) can
also be written as

cosαp = cosα
0
− p λ

da
. (10.25)

The directions αps define grating-lobe cones around the array axis. They are normally
undesired and can be avoided by choosing the element spacing sufficiently small that the
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Figure 10.7: ?Different contributions to the radiation pattern of a linear array in a plane through
the array axis for da ≈ 0.7λ and L ≈ 10λ. (a) Normalized array factor as a function of cosα. (b)
Normalized radiation pattern of the element. (c) Combined radiation pattern when the main beam
direction is at broadside (i.e., α0 = 90◦. (d) Combined radiation pattern when the main beam is at
30◦ from broadside (i.e., α0 = 60◦).
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grating-lobes appear in the invisible region | cosαp| > 1 for all desired α
0
. By using (10.25)

this requirement for nonradiating grating-lobes becomes

da ≤
λ

1 + | cosα0 |+ (λ/L)
, (10.26)

where L is the length of the array. To obtain this we have assumed that the half-width of
the grating-lobe is λ/L which corresponds to the case of a uniform excitation distribution
A(a) = 1. The condition is easily seen by studying Fig. 10.7d. We see from (10.26) that the
elements must be located closer than 1λ in order to avoid grating-lobes in a long broadside
array. For a long endfire array the requirement is closer than 0.5λ.

Grating-lobe problems can also be avoided by suppressing them with the element pat-
tern.

10.1.7 Sidelobes

The near-in sidelobes of an array is mainly determined by the array factor, i.e., by the
sidelobes of the Fourier transform Ã(ka) of the excitation function. The levels of the near-in
sidelobes of the array are for most scan angles α0 not affected by the element pattern. The
reason is that the array normally is scanned over regions where the element pattern is flat
or nearly flat. The desired element pattern for maximum beam steering is indeed nearly
constant within

αmin < α < αmax , (10.27)

where αmin and αmax define the limits of the steering. In addition, the element spacing da
should be small enough to avoid grating-lobes inside the main beam of the element pat-
tern.

Some 3D patterns of theoretical linear phased arrays including the element factor are shown in
Fig. 10.8, for α0 = 90◦ corresponding to broadside radiation (left figure), for α0 = 60◦, and for
α0 = 0◦ corresponding to endfire radiation. There is assumed to be 10 elements with spacing
of 0.5λ. The upper Fig. 10.8a shows the radiation patterns of the element and the linear
array when the elements are Huygens sources pointing in z-direction. The Huygens source
elements are omnidirectional around their pointing direction. Therefore, the linear array
pattern is rotationally symmetric. When the array is phased to endfire direction (α0 = 0◦),
there should be a grating-lobe at α0 = 180◦. However, this is completely suppressed by the
null of the element pattern in this direction.

The elements of the radiation patterns in Fig. 10.8b are y-directed z-polarized small slots in
an infinite ground plane, corresponding to incremental y-directed magnetic currents. We see
that now there is a grating-lobe at α0 = 180◦ that is equally strong as the main lobe when
α0 = 0◦, because the element pattern is uniform in xz-plane. There is no radiation behind
the ground plane.

The elements of the radiation patterns in Fig. 10.8c are z-directed y-polarized small slots in
an infinite ground plane, corresponding to incremental z-directed magnetic currents. We see
that now there is no grating-lobe at α0 = 180◦ when α0 = 0◦, and there is no main lobe either,
both because the element pattern is zero along both the positive and negative z-axis. There
is no radiation behind the ground plane.
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(a) The elements are z-directed Huygens sources.

(b) The elements are y-directed z-polarized small slots in an infinite ground plane coinciding with the yz-
plane, i.e., y-directed magnetic currents.

(c) The elements are z-directed y-polarized small slots in an infinite ground plane coinciding with the yz-
plane, i.e., z-directed magnetic currents.

Figure 10.8: ?3D radiation patterns (total far field) of three different linear phased arrays. The
three linear arrays have different elements as explained in (a), (b) and (c). The radiation patterns of
the elements are shown to the left, and the radiation patterns of the arrays are shown to the right for
three different main beam directions. There are 10 elements in each array, and the spacing between
them are 0.5λ.
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10.1.8 Directivity of long linear array

To calculate the directivity of the array we may conveniently locate â along ẑ. Then, the
far-field function becomes

G
A

(θ, ϕ) = G(θ, ϕ)AF(θ) , (10.28)

where G(θ, ϕ) is the element factor and AF(θ) is the array factor. The power integral defined
in Section 2.3.8 becomes

P =

∫ 2π

0

∫ π

0

|G(θ, ϕ)|2|AF(θ)|2 sin θdθdϕ , (10.29)

where |G(θ, ϕ)|2 = |G(θ, ϕ) · θ̂|2 + |G(θ, ϕ) · ϕ̂|2 . (10.30)

For long arrays, AF(θ) is much more directive than G(θ, ϕ), so it takes the properties of a
sampling delta function. Therefore, we may approximate (10.29) by using (10.19) to arrive
at:

P =
∑
p

∫ 2π

0

|G(θp, ϕ)|2dϕ
(

1

da

)2 ∫ π

0

|Ã(cos θ − cos θp)|2 sin θdθ , (10.31)

where the sum is taken over all values of p for which θp is in visible space. The latter can be
done without significant errors when A(ka) is a narrow function such as when L� λ, provided
the main lobe of (cos θ − cos θp) is completely in the visible region, i.e., typically

1− | cos θp| > λ/L . (10.32)

This means that the present analysis is not valid when the main or grating-lobes appear at
endfire directions.

Let us define the following integral

Pθ =

(
1

da

)2 ∫ π

0

|Ã(cos θ − cos θp)|2 sin θdθ . (10.33)

This can be simplified by substituting ka with k cos θ and dka with −k sin θdθ and extending
the integration boundaries of the ka integral to ±∞. Then,

Pθ =

(
1

da

)2
1

k

∫ ∞
−∞
|Ã(ka)|2dka , (10.34)

and (10.31) simplifies to

P ≈ Pθ
∑
p

Pϕ(θp) with Pϕ(θp) =

∫ 2π

0

|G(θp, ϕ)|2dϕ , (10.35)

where the sum is still taken over all values of p for which θp is in visible space. We may now
use Parseval’s theorem for Fourier transforms∫ ∞

−∞
|A(a)|2da =

1

2π

∫ ∞
−∞
|Ã(ka)|2dka , (10.36)

to finally obtain

Pθ =
λ

da

1

da

∫ L/2

−L/2
|A(a)|2da . (10.37)
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Thus, the longitudinal part of the power integral can be evaluated by integrating the square
of the excitation distribution A(a) along the array. This corresponds to what we did when we
introduced the power integral over the rectangular aperture in the aperture power integral in
Eq. (7.35)8. However, here we consider an integral over a one-dimensional line distribution
instead of two-dimensional aperture distribution. We can now express the directivity as a
product of three factors, according to

D
0

= 4π

∣∣∣∣Gco(θ
0
, ϕ

0
)

1

da
Ã(0)

∣∣∣∣2 /P = DθDϕegrt . (10.38)

Here,

Dθ = 2

∣∣∣∣ 1

da
Ã(0)

∣∣∣∣2 /Pθ =
2

λ

∣∣∣∣∣
∫ L/2

−L/2
A(a)da

∣∣∣∣∣
2

/

∫ L/2

−L/2
|A(a)|2da (10.39)

is the directivity in the longitudinal ϕ0 -plane containing the main lobe maximum,

Dϕ =
2π|G

0
(θ

0
, ϕ

0
)|2

Pϕ(θ
0
)

= 2π|Gco(θ
0
, ϕ

0
)|2/

∫ 2π

0

|G(θ
0
, ϕ)|2dϕ (10.40)

is the directivity on the main lobe cone θ
0
, and

egrt = Pϕ(θ
0
)/
∑
p

Pϕ(θp) (10.41)

is a grating efficiency which represents the power loss due to grating-lobes.

When the elements have an omnidirectional far-field function around the array axis, Dϕ
does not change when the beam is steered from broadside (θ0 = 90◦) towards endfire (θ0 =

0◦). The longitudinal directivity is seen to have a maximum of 2L/λ when the excitation
distribution is uniform. This maximum is independent of θ

0
.This is logical since the main

beam cone occupies a ring-shaped solid angle of 2π sin θ0 · θ3 dB(rad)2 where θ3 dB is the double
3 dB beamwidth of the ring-shaped main lobe. The total solid angle of the main beam cone
is independent of θ0 for narrow beams because θ3 dB ∝ 1/ sin θ0 which can be seen as follows.
The beam width ∆(cos θ) does not vary when plotted against cos θ, whereas this corresponds
to |∆θ| proportional to 1/(sin θ) when plotted against θ, because ∆(cos θ) = − sin θ∆θ.

The grating efficiency contains a sum over all radiating grating-lobes. This can be easily
estimated from knowing the direction θp of the grating-lobe and the level of |G(θp, ϕ0)| in
the principal plane ϕ0 . When there is only one grating-lobe, the grating efficiency becomes
approximately

egrt =
|G(θ0 , ϕ0)|2

|G(θ
0
, ϕ

0
)|2 + |G(θ±1

, ϕ
0
)|2 , (10.42)

where θ±1
is the direction of the first grating-lobe which corresponds either to p = −1 or

p = +1. To obtain this simplified formula we have assumed that the shapes of |G(θ0 , ϕ)|2 and
|G(θ±1 , ϕ)|2 are almost equal when plotted as a function of ϕ. This is in particular true if the
element patterns are omnidirectional, i.e., that they have no variations with ϕ.

8 See Section 7.4.
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10.1.9 Directivity of endfire array

The endfire array needs special care because part of the main lobe vanishes due to the
invisible region. In this case the radiation integral of the m = 0 term in (10.19) becomes
(cos θ0 = 1)

P =

∫ 2π

0

∫ π

0

|G(θ0 , ϕ0)|2
(

1

da

)2

|Ã(cos θ − 1)|2 sin θdθdϕ . (10.43)

The elements used in endfire arrays will always have a broad lobe near θ0 = 0, so we may
write

P = |G(0, 0)|22π

(
1

da

)2 ∫ 1

−1

|Ã(cos θ − 1)|d(cos θ) . (10.44)

We see that in this case the integral contains only the half of the main lobe of |Ã(ka − kϕ)|
which is in the visible region. Therefore, this time we get (compare with the derivations in
the previous subsection)

P = 2π|G(0, 0)|2 1

2d2
a

∫ L/2

−L/2
|A(a)|2da . (10.45)

Finally, the directivity for the endfire case becomes

D = 4π

∣∣∣∣G(0, 0)
1

da
Ã(0)

∣∣∣∣2 /P
=

4

λ

∣∣∣∣∣
∫ L/2

−L/2
A(a)da

∣∣∣∣∣
2

/

∫ L/2

−L/2
|A(a)|2da ,

(10.46)

which is twice that of a broadside array of elements that are omnidirectional in ϕ. In practice,
endfire arrays cannot be designed with grating-lobes present, so the grating efficiency will be
unity. The maximum value that the endfire directivity can take is therefore

Dmax = 4L/λ , (10.47)

which appears when the excitation is uniform, i.e., A(a) = 1 within −L/2 < a < L/2.

10.1.10 Example: Linear array of waveguide apertures

Consider an infinite ground plane with a linear array of rectangular waveguide apertures.
Each aperture has a length l = 0.7λ and width w � λ. We want to design the array for scan
in H-plane. The excitation is uniform with linearly progressive phase.

a) Write the expression for the radiation field function G(θ, ϕ) of one single element when
we locate the coordinate system with its z-axis normal to the aperture and its y-axis in the
direction of the polarization.

b) What are the approximate radiation patterns of the element in the E- and H-planes when
we assume that l is small?

c) Determine the length of the array when we require that the 3 dB half beamwidth in the
plane of scan should be smaller than or equal to 0.2◦ at broadside.
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d) How many elements are needed when we require that the grating-lobe maximum shall
not radiate in visible space when the main beam is at broadside?

e) Choose the minimum possible element distance. How far from broadside can we scan the
beam when we require that the grating-lobe maximum shall not radiate in visible space?

f) Calculate the directivity in dBi as a function of scan angle when there is no grating-lobes.

SOLUTION:

a) The radiation field function of the waveguide aperture is:

G(θ, ϕ) = C(x̂× r̂)M̃(k(x̂ · r̂))

= C(sinϕθ̂ + cos θ cosϕϕ̂)M̃(k sin θ cosϕ) ,

where C is a constant and M̃(kx) =
∫ l/2
−l/2 cos(πx′/l)ejkxx

′
dx′.

b) The E-plane pattern (ϕ = 90◦) is omnidirectional, and the H-plane pattern goes approxi-
mately as cos θ.

c) The radiation field function of the array is given by GA(θ, ϕ) = G(θ, ϕ)AF(r̂) where the
array factor is

AF(r̂) =
1

da

∞∑
m=−∞

(−1)m(n−1)Ã

(
ka − kϕ +m

2π

da

)
.

If we assume that there is no grating-lobes, we have

AF(r̂) ≈ 1

da
Ã(ka − kϕ) =

1

da
Ã(ka) ,

where the latter form is valid when the main beam radiates broadside. The 3 dB width of
Ã(ka) is9 θdB = arcsin(0.445λ/L) = 0.2◦. Thus, we need an array length

L = 0.445λ/ sin(0.2◦) = 127.5λ .

d) The requirement for no radiating grating-lobe maxima when the main lobe radiates in
the broadside direction (i.e., α0 = 90◦) is

da ≤
λ

1 + | cosα
0
| = λ .

Thus, we need at least N = L/λ = 127.5, i.e., 128 elements.

e) The minimum possible element spacing is equal to the element size da = 0.7λ. We can use

da =
λ

1 + | cosα0 |
= 0.7λ

to calculate

| cosα0 | =
λ

da
− 1 = 0.429 and α0 = arccos(0.429) = 64.6 .

9 See Table 7.1 in Section 7.4.3.
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Figure 10.9: Two dipoles located at arbitrary locations and with arbitrary orientations (upper),
and their equivalent circuits (lower).

Thus, we can steer to (90◦−64.6◦) = 25.4◦ from broadside before grating-lobe maxima appears.
In this case, we do not need to use the slightly stricter condition which includes the length
L of the array, since the H-plane pattern has a null at both endfire directions, and therefore
will suppress the grating-lobes at endfire.

f) The directivity is given by D0 = DθDϕegrt. When there is no radiating grating-lobes
egrt = 1. A uniform excitation gives a longitudinal directivity Dθ = 2L/λ = 24.07 dB. The
slot is omnidirectional in the upper half-space on a cone around the x-axis. If now ϕx is
measured around the x-axis, we obtain the directivity on the main lobe cone:

Dϕx = 2π/

{∫ π

0

dϕ

}
= 2 (i.e., 3.01 dB) .

Thus, the directivity of the linear array becomes (D0)dBi = (24.07 + 3.01) dBi = 27.08 dBi. This
is independent of scan angle a long as there is no radiating grating-lobes.

10.2 Scan Impedance or Admittance

Each separate array element is characterized by its self-impedance (or admittance) in free
space. However, when the element is located in the array environment its apparent input
impedance changes due to mutual coupling to the other elements, in particular to the closest
ones. The input impedance of an element, when all the array elements are excited for the
desired radiation pattern, is called the scan impedance or the active impedance. As the name
suggests this impedance varies with the scan angle when the main beam is phase-steered. In
the following subsections, we will show how to calculate the scan impedance for an array of
half-wave dipoles. The scan impedance is traditionally referred to as the active impedance,
but the preferred name is now scan impedance to avoid confusion with active antennas, i.e.,
antennas with active integrated components.
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10.2.1 Mutual impedance between two dipoles

We consider two half-wave dipoles: one located at r
1

and oriented in the direction l̂
1
, and

the other located at r
2

and oriented in the direction l̂
2
, see Fig. 10.9. Both are modeled by

the sinusoidal dipole current of a half-wave dipole10, i.e.,

J
1
(l

1
) = I

1
cos(πl

1
/λ)̂l

1
for |l

1
| < λ/4

for dipole number 1 and

J2(l2) = I2 cos(πl2/λ)̂l
2

for |l
2
| < λ/4

for dipole number 2. Both dipoles have a feed gap at their centers where the port current is
I1 and I2 , respectively. The voltages at the two ports are correspondingly V1 and V2 .

Let us now consider a current source I2 at port 2. This causes an E-field E12 at dipole 1,
and a voltage V12 is induced over its port. Next we consider a current source I1 at port 1
which induces a voltage V21 at port 2. From reciprocity we know that the reaction between
V12 (due to I2) and I1 must be equal to the reaction between V21 (due to I1) and I2

11. This
means that

−V
12
I

1
= −V

21
I

2
. (10.48)

Also, in the same way the reaction between E12 (due to I2) and J1(l1) must be equal to the
reaction between V21 (due to J1(l1)) and I2 , i.e.,

〈E
12
,J

1
(l

1
)〉 = −V

21
I

2
. (10.49)

By using (10.48) and (10.49), we can calculate V12 as follows

V12 = − 1

I
1

〈E
12
,J

1
(l

1
)〉 . (10.50)

E12 is proportional to I2 , so we may introduce a mutual impedance of the form

Z12 =
V12

I
2

= − 1

I
1
I

2

〈E12 ,J1(l1)〉 . (10.51)

The equivalent circuits are shown in Fig. 10.9 as well. They are obtained from Section 2.6.1.
The mutual impedances are included as voltage sources which are proportional to the current
of the opposite dipole. The actual expressions which must be evaluated are

E
12

(r)

I2

= Ck

∫ λ/4

−λ/4
η cos

(
πI ′

2

λ

)
[̂l

2
C
N1
− (̂l

2
· R̂)R̂C

N2
]
1

R
e−jkRdl′

2
, (10.52)

where Ck, CN1
and CN2

are given in equation (4.41)-(4.42) and R = |r− r′|, with

r = r1 + l l̂
1

for− λ/4 < l < λ/4 ,

r′ = r
2

+ l′̂l
2

for− λ/4 < l′ < λ/4 .
(10.53)

10 See Section 5.1.2.
11 See Section 4.5.



349 CHAPTER 10. ARRAY ANTENNAS

80

60

40

20

0

-20

-40

M
u

tu
a

l 
im

p
e

d
a

n
c
e

 (
Ω

)

3.02.52.01.51.00.50.0

Separation (d/λ)

Real part

Imaginary
part

40

20

0

-20

M
u

tu
a

l 
im

p
e

d
a

n
c
e

 (
Ω

)

1.51.00.50.0

Separation (d/λ)

Real part

Imaginary part

Side-by-side arrangement

d

Colinear arrangement

λ/2

d λ/2

λ/2
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The reaction integral becomes

1

I
2
I

1

〈E
21

(r),J
1
(l

1
)〉 =

∫ L1/2

−L
1
/2

(E
12

(r)/I
2
) · cos(πl

1
/λ)̂l

1
dl

1
. (10.54)

The mutual impedance is much easier to calculate than the self-impedance because there
is no problem with singularities in the Green’s function. The mutual impedance for two
half-wave dipoles is evaluated from the above, and is plotted in Fig. 10.10 for side-by-side
and colinear orientations?. We could also have evaluated it by using the near-field algorithm
presented in Section 4.7.1.

10.2.2 Scan impedance (active impedance)

The equivalent circuit of dipole number m in an array of dipoles is shown in Fig. 10.11. The
total voltage at its port will be

Vm =

N∑
n=1

ZmnIn , (10.55)

where Zmn is the mutual impedance between dipoles m and n when n 6= m, and the self-
impedance of dipole m when n = m.
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Figure 10.11: Equivalent circuit of dipole number m in a linear array of dipoles.

When phase steering the array, we excite the array factor in (10.6) by the voltages

V0m = Ame
−jkam sin(α

0
)+jϕc for m = 1, 2, ..., N , (10.56)

at the ports of the N elements where α
0

is the main lobe direction defined by sinα0 = kφ/k.
If we model the physical excitation circuit by its Thevenin equivalent, the current on element
m needs to be calculated from the circuit equation

V0m = Z
0
Im +

N∑
n=1

ZmnIn , (10.57)

where Z0 is the source impedance. This defines N linear equations with the N unknowns
I1 , I2 , ..., IN that can be readily solved. When the unknown currents have been found we
obtain the apparent impedance of each element m to be

Zmscn
=

N∑
n=1

Zmn

(
In
Im

)
. (10.58)

The mutual impedances are strongest for the closest elements, so the boundaries of the sum
expression may often be truncated to the three to five neighboring elements on each side.
The solutions for Im can be expressed as

Im =
V0m

Z
0

+ Zmscn

. (10.59)

Zmscn is called the scan impedance, because it depends on the scan angle α
0
. The traditional

name is active impedance. This is the apparent impedance seen at the terminal of element
m when all the elements of the array are excited, i.e., when all elements are active. The
scan impedance is in principle different for each element. However, if the amplitude excita-
tion varies slowly over the array, and if the phase variation is linear as in (10.56), the scan
impedance will be the same for all elements. However, the three to four elements that are lo-
cated closest to each of the two ends of the array may have a different scan impedance.

There exist special techniques for calculating the scan impedance of infinite arrays, by using
so-called Floquet mode expansions of the field solutions. The infinite array impedance can
also be measured in an infinite array simulator, which can be realized by locating one or
more array elements inside a rectangular waveguide. Imaging in the walls of the waveguide
create the “infinite” array environment.

10.2.3 Scan blindness

The scan impedance changes with the direction α
0

of the main lobe. If we match the scan
impedance to the source (or transmission line) impedance at broadside (α0 = 90◦), we will
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get mismatch and corresponding power loss when the beam is scanned away from broadside.
At some angle the scan impedance may change very rapidly creating a large mismatch. This
effect is referred to as scan blindness.

Scan blindness can have two reasons: it may be due to the sudden appearance of a grating-
lobe in the visible region of the array factor AF(cosα), or it may be due to the sudden and
large excitation of a surface wave in the antenna structure.

a) The first case appears when the element pattern is very broad, such as, e.g., in the E-
planes of waveguide slot and microstrip antennas. The first radiating grating-lobe has its
maximum along the array when (see (10.25) and (10.26))

| cosα
0
| = (λ/da)− 1 . (10.60)

Therefore, scan blindness appears when α0 approaches and exceeds this value. Then, all
array elements will be phased for radiation along the array, so that the mutual coupling
voltages of all elements add in phase and cause a large change in the scan impedance and
thereby a large mismatch of the elementss. We also get a large and sudden change in the
directivity, because the grating efficiency ηgrt decreases. The angle in (10.60) cannot be
overpassed during the scan and represents a limitation of the scanning range. This blindness
never appears if da < λ/2 since then | cosα0 | > 1.

b) The second case appears when the structure upon which the array elements are located
can support surface waves. This may, e.g., be the grounded substrate of a microstrip antenna.
The substrate may support a surface wave with wavenumber ksw > k. The scan blindness
appears when the main beam is scanned to

k| cosα
0
| −
(

2π

da

)
= −ksw , (10.61)

where λsw = 2π/ksw is the wavelength of the surface wave. Since (λ/λsw) > 1, the blindness
angle α

0
can be located in the visible range also if (λ/da) > 2. This blindness corresponds

to the excitation of a grating lobe appearing as a surface wave in the structure, i.e., being
in invisible space. It is not radiating, but propagates inside the structure. It couples to the
elements and changes their scan impedances strongly.

10.2.4 Active, scan and embedded element patterns

The scan characteristics of the array can be measured directly by exciting and phasing all
elements. However, it is also possible to measure the scan characteristics by exciting one
single element in the middle of the array. All the other elements must then be present and
terminated by the same impedance which the voltage sources will have when all the elements
are excited. The measured far-field pattern of this array with one element excited (as a
function of the polar angle in the principal ϕ-plane) will then represent the variation of the
directivity (of the complete array when all the elements are excited) as a function of the scan
angle in the same ϕ-plane. Such scan element patterns measured in the array environment
show sudden dips in directions with scan blindness, see Fig. 10.12. Traditionally the scan
element pattern is called active element pattern, so most previous literature use the latter
term. The term scan element pattern is also used in a recent textbook.
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Figure 10.12: Example of scan element pattern with blindness dip at θ = 60◦.

However, the scan (or active) element pattern is nowadays even more descriptively referred
to as the embedded element pattern. This is the far-field function of one element in the
array when all the other elements are present and terminated. The term is originating
from [4]. However, the main concept that the embedded element has a very low efficiency
in a dense array originates from 1964 [5] and explains the paradox that the gain of a dense
array always is smaller than the sum of the gains of each isolated element. This so-called
embedded element efficiency is a concept that quantifies the effects of mutual coupling in one
single efficiency value and thereby provides a unifying concept [6]. Is used also to characterize
MIMO arrays [7]. The embedded element pattern is time-consuming to compute because the
mutual couplings between all elements must be included. The low efficiency associated with
a single embedded element in a dense array is not known in previous literature using the
active element terminology.

The embedded element efficiency is treated in detail in Chapters 3 and 11.

10.3 Planar arrays of equispaced elements

The planar array consists of elements that are located in a planar two-dimensional grid. It
can be looked upon as a linear array of linear arrays. Therefore, the features present in linear
arrays will also appear in planar arrays. The planar array has the capability of phase steering
the main beam to any direction in space if properly designed. It is also more versatile than
the linear array in other ways, e.g., the main beam can be shaped to any form by controlling
the amplitudes and phases of all elements. The elements of a planar array can be located in
many types of grids. The most common ones are the rectangular grid and the triangular grid
(Fig. 10.13). Our treatment is limited to the rectangular grid, even though the triangular
grid has better scan characteristics.

10.3.1 Array factor as an element-by-element sum

A rectangular grid in the xy-plane is shown in Fig. 10.14. The element spacing is dx in
x-direction and dy in y-direction. Then, the element locations are described by

rmn = rc +

(
m− M + 1

2

)
dxx̂ +

(
n− N + 1

2

)
dyŷ , (10.62)
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(a) (b)

Figure 10.13: Element locations in array antennas with (a) quadratic and (b) triangular grids. The
elements shown have circular apertures. The triangular grid is very compact.

for n = 1, 2, ..N , m = 1, 2, ..M where rc is the geometrical center of the array. The far-field
function of the array becomes

G
A

(r̂) = G(r̂)AF(r̂) , (10.63)

AF(r̂) =

N∑
n=1

M∑
m=1

Amne
jΦmnejkrmn·r̂ , (10.64)

where G(r̂) is the far-field function of the embedded element, and AF(r̂) is the array factor
written as an element-by-element sum with Amne

jΦmn the excitation of element mn. The
element-by-element sum in (10.64) is convenient only for arrays with few elements. For large
arrays the approach in the next section is preferable.

10.3.2 Array factor as a grating-lobe sum

In the same way as for the linear arrays we introduce an excitation distribution A(x, y). This
is smooth and continuous for |x| < Lx/2 and |y| < Ly/2 with Lx = Mdx and Ly = Ndy. Further
A(x, y) is zero when |x| > Lx/2 or |y| > Ly/2, and takes on the values

A(x, y) = Amn (10.65)

at all rmn inside the array. Similarly, we define a smooth and continuous phase function
Φ(x, y). We assume this to vary linearly with x and y according to

Φ(x, y) = Φc − kΦxx− kΦyy , (10.66)

where kΦx(kΦy ) is the “propagation” constant of the phase excitation in x-direction (y-
direction), defined by

kΦx = −∆Φx/dx with − π < ∆Φx < π ,

(kΦy = −∆Φy/dy with − π < ∆Φy < π) ,
(10.67)

with ∆Φx(∆Φy) the phase difference between neighboring elements in x-direction (y-direction).
Of convenience we choose both ∆Φx and ∆Φy in the interval −π to π, in the same way as we
did it for the linear array.

We can now express the array factor as a double integral by using the sampling properties
of the delta function, according to

AF(r̂) =

=

∫ ∞
−∞

∫ ∞
−∞

{ ∞∑
m=−∞

δ(y −mdy)

∞∑
m=−∞

δ(x−mdx)

}
·A(x, y)ejΦ(x,y)ejkr·r̂dxdy ,

(10.68)
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Figure 10.14: Example of array with rectangular aperture and rectangular grid, and its excitation
distribution A(x, y).
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where r = xx̂ + yŷ. Here, the finite element by element sums have been extended to infinity,
which could be done because A(x, y) is zero when n < 1, n > N , m < 1 and m > M . The
delta series in x-direction is periodic with period dx, so it can be expanded in a Fourier series
according to (see also Eq. (10.18))

∞∑
m=−∞

δ(x−mdx) =
1

dx

∞∑
p=−∞

(−1)p(M−1)e−jp(2π/dx)x . (10.69)

We can expand the delta series in y-direction in the same way, giving

∞∑
m=−∞

δ(x−mdx)
∞∑

n=−∞
δ(y − ndy) =

=
1

dxdy

∞∑
p=−∞

∞∑
q=−∞

(−1)p(M−1)+q(N−1)e−jp(2π/dx)xe−jq(2π/dy)y

. (10.70)

Using these expansions in (10.68) and interchanging the integration and summation we finally
achieve

AF(r̂) = ejφc
1

dxdy

∞∑
p=−∞

∞∑
q=−∞

Ã

(
kx − kΦx − p

2π

dx
, ky − kΦy − q

2π

dy

)
, (10.71)

where Ã(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

A(x, y)ejkxxejkyydxdy (10.72)

is the two-dimensional Fourier transform of the excitation distribution A(x, y). This expres-
sion is very similar to that of the linear array12. Thus, we may also here refer to the infinite
sum expression in (10.71) as an infinite grating-lobe (or Floquet mode) sum version of the
array factor. The array factor is a sum of equal contributions, which are displaced relative to
each other. If A(x, y) is a real function, Ã(kx, ky) will have a maximum at Ã(0, 0). Therefore,
each of the contributions is centered around its maximum for which kxp = kΦx +p(2π/dx) and
kyq = kΦy + q(2π/dy). The array is located in the xy-plane. Therefore, the array factor is
conveniently represented in terms of

kx/k = sin θ cosϕ , ky/k = sin θ sinϕ , (10.73)

where kx/k and ky/k are the uv-coordinates introduced in Section 2.3.6.

10.3.3 Steered main lobe

The first maximum of the array factor appears when p = q = 0 and

kx0 = kΦx , ky0 = kΦy . (10.74)

This means that the maximum appears for the θ
0

and ϕ
0

given by (see Fig. 10.15)

sin θ
0

=
√

(kΦx)2 + (kΦy )2/k , tanϕ
0

= kΦy/kΦx . (10.75)

Therefore, we can also now steer the beam by exciting the elements with a linearly progressive
phase. The shape of the main beam is mainly determined by the Fourier transform of the
excitation distribution.
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Figure 10.15: Illustration of the main lobe for the case in Fig. 10.16 and its width in different
planes.

It is of interest to know the width of the main beam in different planes. The shape of the
main beam is determined by Ã(kx − kx0, ky − ky0), and the width of this in terms of kx and
ky is independent of the values of kx0 and ky0. Let us define the width in a certain ϕ-plane
through the main lobe to be ∆k(ϕ). Then, it is possible to show that the corresponding
angular width of the beam in radians as seen in a coordinate system with z-axis in the
direction θ0 , ϕ0 becomes

∆θ(ϕ) =

(
∆k(ϕ)

k

)√
(sin(ϕ− ϕ

0
))2 + (cos(ϕ− ϕ

0
)/ cos θ

0
)2 . (10.76)

This can be seen by studying Fig. 10.15 and Fig. 10.16c.The proof is left as an exercise. We
see that the beamwidth broaden as 1/ cos θ0 in the plane of scan ϕ

0
when the scan angle θ

0

increases. There is no beam broadening in the plane orthogonal to the scan plane.

10.3.4 Grating-lobes

The array factor has also maxima when

kxp = kΦx + p
2π

dx
, kyq = kΦy + q

2π

dy
, (10.77)

for p = ±1,±2, ... and q = ±1,±2, ..., which corresponds to

sin θpq cosϕpq = sin θ
0

cosϕ
0

+ p
λ

dx
,

sin θpq sinϕpq = sin θ
0

sinϕ
0

+ q
λ

dy
.

(10.78)

These are grating-lobes. The locations of the grating-lobes appear with equal spacing on
a rectangular grid in a plane with uv-coordinates u = sin θ cosϕ and v = sin θ sinϕ (see
Fig. 10.16). The shape of the main lobe and grating-lobes is determined by Ã(kx−kxp, ky−kyq)

and can be plotted as contours around the directions in (10.78).

12 See the discussion at the end of Section 10.1.3.
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Figure 10.16: Illustration of grating-lobe locations in array with circular aperture and rectangular
grid. (a) Element factor. The contours show the level in dB relative to broadside. (b) Array factor.
The contour illustrate the circular beamwidth. (c) Combined array and element factors (the grey
tone illustrates modification of level due to element pattern).
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Let us take a look at the first grating-lobe in the diagonal plane of the unit cell of the array.
The diagonal plane of the element geometry is defined by ϕ = arctan(dy/dx), whereas it is
clear that the corresponding first grating-lobes appear in the complementary diagonal planes
defined by ϕ = ± arctan(dx/dy). This is surprising, and important. The level of all the
grating-lobes are determined by the level of the element patterns in their directions relative
to the level of the element pattern in the main lobe direction.

In order to avoid visible grating-lobes, we must require that the grating-lobes are located
outside the circle in Fig. 10.16, for which sin θ = 1, which defines the visible region. The
width of the grating-lobes are about λ/D, where D is the diameter of the array in the ϕ-plane
of the grating-lobe, so we must typically require that sin θpq > 1 + (λ/D) which corresponds
to √(

sin θ
0

cosϕ
0

+ p
λ

dx

)2

+

(
sin θ0 sinϕ0 + q

λ

dy

)2

> 1 +
λ

D
(10.79)

in order to avoid any radiation of the grating-lobe into visible space becomes. This sets a
similar requirement for non-radiating grating lobes to the element spacings dx and dy, as that
in (10.26) for linear arrays. The grating-lobes can also be suppressed by the element factor.
This is clearly seen by the contour plots in Fig. 10.17.

10.3.5 Directivity

The power integral of the planar array is

P =

∫ 2π

0

∫ π/2

0

|G
A

(θ, ϕ)|2 sin θdθdϕ , (10.80)

where we have assumed that the element factor is zero behind the array, i.e., for |θ| > π/2.
This is true when the array elements are located on a ground plane or in other ways are
unidirectional. There may be some radiation for θ > π/2 caused by diffraction from the
ground plane edge, but these effects cannot be accounted for by the array factor expressions
we have derived. Let us now introduce the array factor in (10.71) into (10.80), and do the
following variable substitution,

kρ = k sin θ , dkρ = k cos θdθ . (10.81)

Then,13

P =

∫ 2π

0

∫ k

0

|G(θ, ϕ)|2|AF(kρ cosϕ, kρ sinϕ)|2 1

k2 cos θ
kρdkρdϕ . (10.82)

For arrays having a large number of elements in both x- and y-directions, the array factor
will be much narrower than the element factor. Then, the array factor in (10.82) may be
considered as a sum of delta functions, so by using (10.71) and (10.82) we may write

P =
∑
pq

|G(θpq, ϕpq)|2
(2π)2

k2 cos θpq(dx, dy)2
Ppq , (10.83)

13 We have not removed the inverse cos θ factor by the substitution, because this varies slowly compared
to the array factor.
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(a)

(b)

(c)

Figure 10.17: ?Contour plots of: (a) element factor, (b) array factor and (c) total far field function
of the planar array illustrated in Fig. 10.16. M = 5, dx = 0.7λ , N = 5, dy = 1λ, θ0 = 30◦ and
ϕ0 = 45◦.
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where the sum is taken over all pqs in the visible region, and

Ppq =
1

(2π)2

∫ 2π

0

∫ k

0

|Ã(kx − kxp, ky − kyq)|2kρdkρdϕ , (10.84)

with kxp and kyq the same as in (10.77). We can alternatively write

Ppq =
1

(2π)2

x

visible space

|Ã(kx − kxp, ky − kyq)|2dkxdky . (10.85)

We can extend the integration limits to infinity and use Parseval’s theorem for Fourier trans-
forms in the same way as when we treated the linear arrays. The result is

Ppq =
x

A

|A(x, y)|2dxdy (10.86)

independent of the values of p and q. The latter integral is only taken over the aperture
area A because the excitation distribution A(x, y) is zero outside A. The area A is assumed
to extend half an element spacing outside the outer elements. Eq. (10.86) is very easy to
evaluate, and makes (10.83) a convenient expression for the power integral.

The directivity can be separated in several different factors by using (10.63), (10.75), (10.83)
and (10.86), according to

D = 4π(|G(θ
0
, ϕ

0
)AF(k sin θ

0
cosϕ

0
, k sin θ

0
sinϕ

0
) · ĉo∗|2/P )

= egrt cos θ
0
epoleillDmax .

(10.87)

The different factors are the maximum available directivity

Dmax =
4π

λ2
A , (10.88)

where A is the aperture area. the aperture illumination efficiency

eill =
1

A

∣∣∣∣∣x
A

A(x, y)dxdy

∣∣∣∣∣
2

/
x

A

|A(x, y)|2dxdy , (10.89)

the polarization efficiency ,

epol = |G(θ0 , ϕ0) · ĉo∗|2 /
{
|G(θ0 , ϕ0) · ĉo∗|2 + |G(θ0 , ϕ0) · x̂p∗|2

}
, (10.90)

and the grating efficiency ,

egrt = |G(θ
0
, ϕ

0
)|2 /

{∑
pq

|G(θpq, ϕpq)|2
cos θ

0

cos θpq

}
. (10.91)

The sum in the latter is taken over all visible grating- and main-lobes. This factor therefore
represents the power lost in the grating-lobes, and it is very accurate [77].

Thus, the directivity of a planar array decreases with cos θ0 when steered an angle θ
0

from
broadside. This is due to the projection of the aperture into the observation direction. The
aperture illumination efficiency is the same as that of a plane aperture. It is unity for uniform
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illumination. The grating efficiency accounts for the power loss due to grating-lobes. Note
that all the above formulas are independent of the shape of the aperture, i.e., the contour
of A(x, y). The most common shapes are circular, quadratic or rectangular. Some forms of
Ã(x, y) for different apertures and aperture distributions are given in Chapter 5.

The directivity can be evaluated quite straightforwardly by using (10.87) and (10.88). For a
rectangular array (i.e., an array with a rectangular aperture) the excitation distribution may
often be separable in x- and y. Then, the double integrals in (10.89) are separable in single
integrals.

10.3.6 Determination of the realized gain

The realized gain Garr of an array with equispaced equal element can be determined directly
from the directivity formula in (10.87), by multiplying it with the total radiation efficiency
in (2.98) providing this is the same on all elements. The total radiation efficiency contains
the mismatch factor er and the radiation efficiency eabs. This gives

Garr = ereabsegrt cos θ
0
epoleillDmax . (10.92)

If we know the far-field and efficiency of the embedded element we can always find the correct
far-field of the full array by using the most general sum (10.4). Then, the total available power
is also given by the sum of the power available on all ports of the array, so we can determine
the realized gain of the full array directly from its far-field and the total available power.
The formula will be the same independent of how the ports are excited, i.e., independent of
the values of An and Φn in (10.4). This must be stressed that such approach can only be
used when the far-fields of the embedded elements are known including the mutual couplings
and in particular the embedded element efficiency. There is more about this in Section 11.4,
where the realized gain is shown to become very simple when all elements are excited with
the same amplitude and phase, i.e.,

Garr = MNGemb (10.93)

where Gemb is the realized gain of the embedded element.

10.3.7 Example: Design of planar array

We want to design a planar array of equal pyramidal horn antenna elements (with smooth
metal walls). The horns are located side by side as close as possible, and they are excited
with the same amplitude and a linearly varying phase. The element spacing is uniform (but
can be different) in the two principal planes. Assume that we have a loss of 0.5 dB due to
radiation into grating-lobes.

a) Determine the aperture widths of the whole array when we require that the directivity
for broadside radiation shall be larger than 40.5 dB, and that the main beamwidths in the
two principal planes shall be the same.

b) Determine the element spacing and total number of elements in H-plane, if we require
that we shall be able to phase steer the beam to 30◦ from broadside without having radiating
grating-lobes.
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c) Assume that the element spacing in E-plane is dE = 1.98λ. Determine the direction of the
first grating-lobe when the main beam is in the broadside direction.

d) Use a figure in the chapter about horn antennas to determine the level of the grating-lobe
in step c) when the horn is very long. Explain.

e) Use the same figure to determine the minimum length of the horn allowed to keep the
grating-lobe level more than about 10 dB below the main beam maximum.

f) Use the same figure to estimate how much we can phase steer the beam, of the array in
step e), in E-plane if we require that the grating-lobe level should not be higher than −6 dB

relative to the main beam maximum. Explain.

g) Determine the directivity of the array in step f).

SOLUTION:

a) The requirement of equal beamwidths in the E- and H-planes will be satisfied by a
quadratic array. The directivity is given by (10.87). We have (egrt)dB = −0.5 dB and a
uniform excitation gives (eill)dB = 0 dB. Therefore, the directivity without grating-lobes must
be 40.5 dB + 0.5 dB = 41 dB. From (D0 = (4π/λ2)A = 4π(W/λ)2) we get the aperture width

W

λ
=
√
D0/(4π) =

√
104.1/(4π) = 31.65 .

b) We phase steer to θ0 = 30◦ from broadside in H-plane. We choose ϕ = 0 as H-plane,
use (10.79) with q = 0 and p = ±1. This gives the following condition on the element spacing
in H-plane for avoiding grating-lobes:

d
H
≤ λ

1 + sin θ
0

+ λ
W

= 0.65λ .

The total number of elements is NH = W/dH = 49.

c) The direction of the first grating-lobe in E-plane (i.e., ϕ0 = 90◦) when the main beam
radiates broadside is

sin θ±1
= sin θ

0
± λ

d
E

= ± λ

d
E

= ±0.5051 .

This gives θ±1 = ±30.33◦ from broadside.

d) The aperture diameter of the horn is equal to the element spacing, b = dE . The first
grating-lobe appears when b sin θ/λ = 1.98 sin(30.33◦) = 1.0. In Fig. 8.9 we see that grating-
lobe coincides with the first null of the element pattern for a long horn with constant phase
over the aperture.

e) From Fig. 8.10 we see that we must keep the phase variation ∆φ = kb2/(8Lhrn) over the
horn aperture smaller than 90◦ in order to ensure that the first grating-lobe is more than
10 dB below the main beam maximum. Thus, as b = 2.98λ we get the minimum horn length

Lhrn =
kb2

8∆φ
=

360 · (1.98)2λ

8 · 90
= 1.96λ .
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f) We use again Fig. 8.10. The spacing between the grating-lobe and the main lobe is λ/b
in sin θ space, i.e., 1 in (b/λ) sin θ space. We can therefore displace an interval of width 1 as
much as we can before the level difference between the two ends of it is 6 dB. We find that
we can phase steer to (b/λ) sin θ0 = 0.25, i.e., θ0 = 7.25◦, before the grating-lobe will be more
than 6 dB less than the main beam maximum.

g) The directivity varies with main beam direction θ
0

according to

D = ηgrt · cos θ
0
·Dmax .

The relative level of the grating-lobe of −6 dB corresponds to a relative power of 0.25. The
corresponding efficiency reduction becomes by using (10.91) with one radiating grating-lobe
in addition to the main lobe:

10 log

(
1

1 + 0.25

)
= −0.96 dB .

The directivity becomes (41− 0.035− 0.96) dB = −40 dB.

10.4 Complementary comments by S. Maci

10.4.1 Embedded element pattern and open-circuit element pat-
tern

The existing publications on array antennas give some alternative descriptions of the far-
field function of array antennas than those given in this chapter. These are summarized
here.

As underlined in Section 10.2, the array design must take into account that the elements are
affected by the mutual coupling to the neighboring elements. The currents on the neighboring
elements, produce a reaction on the element itself that modifies both its current and input
impedance. An N -element array can therefore be regarded as an N -port device with its
own impedance matrix (or, equivalently, admittance or scattering matrix). However, the
knowledge of the N port scattering matrix and the far-field function of the isolated element
is not sufficient to obtain the far-field function of the embedded element. In other words, the
far-field function of the isolated element is in general different from that of the embedded
element.

Assume a Thevenin representation, where each port of an array is fed by a unit voltage with
an internal series impedance. Next, consider the same array, when only one single element in
the array is excited by its voltage source, and all the other elements are passively terminated
in matched loads (i.e., the voltage sources are short-circuited). The far-field function obtained
in the latter case is the so-called embedded element far-field pattern used in the descriptions
in the previous sections. This embedded |GET

n (r̂)| of the n-th array element accounts for the
power absorbed by the other elements and provides the far-field function of the whole array
by ∑

n

VnGET
n (r̂)ejkrn·r̂ , (10.94)
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where Vn is the voltage excitation of the n-th element, r̂ is the direction of observation and rn
is the coordinate of the array element location. This corresponds to (10.4) when taking into
account that the far-field functions of each of the embedded elements may be different, and,
in particular, the far-field functions for elements near the edge of the array will be different
from those in the center. We have also introduced a superscript ET to denote that these
far-field functions are for elements that are Embedded and Terminated, to separate then
from the far-fields for the open-circuit case below.

Alternatively, the array can be described by the open-circuit far-field function [8]-[10] of
an embedded element. Note that this is also a far-field of an embedded element, but it is
obtained under a different condition, namely that all the non-excited ports are open-circuited.
We choose to call this an open-circuited embedded far field function, to separate it from the
embedded far-field function used elsewhere in this book. Thus, an embedded far-field function
means by default that all non-excited elements are terminated with the port impedance,
whereas we add the explanatory “open-circuit” term if they are open-circuited.

It is clear that an array never operate with open-circuited ports. However, this concept helps
to understand the assumptions underlying some often encountered approximations. The
open-circuit far-field GOC

n (r̂) of a given element in an array is the far-field function obtained
when the element of interest is excited with a unit current source, while all the other elements
are left open-circuited. It is possible to prove that, once all GOC

n (r̂) are known, along with
the array impedance (or scattering) matrix [ZA ] (or [SA ]), the embedded element far-field
functions GET

n (r̂) can be obtained for any set of internal impedances of the generators feeding
the array. To this end, define [ZL ] = diag(Z(n)

L
) as a diagonal matrix whose diagonal elements

Z(n)
L

contains all the array terminations. Then, we get from [8]-[10][
GOC
n

]
= ([Z

A
] + [Z

L
]) ·
[
GET
n

]
, (10.95)

where [G] means a single column matrix containing the vector far-field function G. Therefore,
the embedded far-field function can be computed from the open-circuited one.

If the array is receiving an incident plane wave Ei(r̂) coming from the direction −r̂, the
voltages across the terminals can be obtained from the above by applying reciprocity to
the element of interest in its array environment. When the elements are open-circuited or
terminated with the load Z(n)

L
, the voltages across the terminal of the n-th element are

V OC
n = −2j

η
GOC
n (r̂) ·Ei(r̂) or V Ln = −2j

η
Z(n)
L

GET
n (r̂) ·Ei(r̂) ,

respectively. Both are in full agreement with (2.129). From (10.95) one has[
V L
]

= [Z
L

] ([Z
A

] + [Z
L

])
−1 [

V OC
]
, (10.96)

where [V ] = {Vn}n=1,...,N denote column vectors containing the received voltages. Eq. (10.96)
is consistent with the external characterization of a general N -port network [11]. Self-
contained proof of (10.96) is provided in [12], based on reciprocity concepts from [13].

The currents on the elements that are open-circuited are normally weaker than the currents
on those that are terminated in matched load. There exist “minimum scattering” anten-
nas [14] which scatter very weakly when they are open-circuited. Only a few antennas types
satisfy this condition; among them there are thin dipole antennas, except when they are
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placed in very dense arrays (spacings less than about λ/4). When the minimum scattering
approximation holds, an element do not interact with other elements when they are open-
circuited, and the open-circuit far-field function becomes very similar to the isolated-element
far-field function GISO

n (r̂), i.e.,

GISO
n (r̂) ≈ GOC

n (r̂) . (10.97)

This approximation represents a large simplification in array analysis, because the isolated-
element far-field function can often be found analytically, and it is the same for all elements
if the elements are identical. Thus, if (10.97) is satisfied, we can determine the complete
array performance from the isolated element patterns and the mutual impedance matrix.
Otherwise not. Still, in some other cases it may also be possible to do this, such as when
there is very small mutual coupling between the elements.

The open-circuit far-field function corresponds to a short-circuited far-field function for slots
in ground plane. The treatment is equivalent. Slots can be also viewed as “minimum scat-
tering” antenna, in the sense than when they are short-circuited, the only contribution is the
reflection from the smooth infinite ground plane without a slot.

The open-circuit (or short-circuit) far-field function will be equal to the isolated element
far-field function if the elements radiate via a single antenna mode, such as thin dipoles (or
narrow small slots). Then, the shape of the far-field function of the element will be the same
independently of how it is excited, i.e., independent on whether the excitation is via a current
on its port or via mutual coupling.

10.4.2 MoM for infinite periodic array through periodic Green’s
function

For sufficiently large periodic arrays of identical elements [15], infinite-array approaches will
give useful insight into the behavior of the elements. While FEM and FDTD [23] have been
developed for such simulations, we will here explain how this can be simulated by integral-
equation approaches. The main difference with respect to finite-array approaches lies in the
use of periodic Green’s functions, the convergence of which has been the subject of intensive
research.

The infinite array solution can be obtained with the MoM by simply replacing the single
source Green’s function by an infinite series. This series involves the same type of terms,
each term being related to a “copy” of the source in other cells of the array and multiplied by
a phase factor e−jrnm·k0 . This phase factor takes into account the linear phase progression
along the array. In other terms, the MoM formulation will have the same formal expression as
for normal Green’s functions, provided the individual element Green’s function is substituted
by the periodic Green’s function

ga(r,k
0
) =

∞∑
n,m=−∞

g
0
(r− rmn)e−jrmn·k0 , (10.98)

Where rmn = mdxx̂ + ndyŷ and r = (x, y) are the positions of array point source elements.
This explicit space-domain summation exhibits a poor convergence. It can be converted in a
spectral-domain series by a Poisson summation. For free-space Green’s function, this leads
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to

ga(r,k
0
) =

1

dxdy

∞∑
p,q=−∞

e−jkzpq|z|

8π2jkzpq
e−jr·(k0+k∞) , (10.99)

where

kpq = k0 +
2πp

dx
x̂ +

2πq

dy
ŷ and kzpq =

√
k2 − kpq · kpq .

Eq. (10.99) is also known as Floquet-Wave (FW) representation of the array Green’s function.
From the expression of kzpq it can be seen that, when both dx, and dy are smaller than λ/2 and
|k0 | < k only the dominant (0,0 indexed) plane-wave of the series representation is propagating
in z direction, while all the other are attenuated exponentially. If indeed dx,y ∈ (λ/2, λ), one
higher order backward FW will emerge from cut-off and start to propagate when we increase
|k0 |. This corresponds the case in which a grating lobe enters into the visible range.

For p and q large, the exponent at the right hand side of (10.99) is of the type e−
√

kpq·kpq|z|

which means that the convergence versus p and q is very fast for large |z| and becomes slow
for small values of |z|. This behavior is analogue to that in a single-mode waveguide, in which
only one mode propagates and all the others are in cut-off.

The slow convergence for small |z| is generally referred to as the “on-plane” convergence [19].
Improving the on-plane convergence is important when calculating the mutual coupling of
coplanar elements. There are many techniques being used to speed up the convergence.
One way is to use formulas for series accelerations, like the Shanks formula and the Levin-T
method [20]. Alternative methods are based on a combination of space domain and spectral-
domain approaches, like the Ewald method [21]-[24]. Two-dimensional arrays of point sources
can also be viewed as a subset of 3D arrays, which led to finding a method with exponential
convergence [25]. A detailed review of periodic Green’s functions can be found in [26].

10.4.3 MoM for finite periodic array

The infinite array approach, although important in preliminary design, do neither account for
any desired amplitude variation of the excitation along the array, nor for edge effects due to
the truncation of the infinite size. To overcome this limitation a finite-array analysis [27] can
be carried out by the “windowing” method. This method consists of a windowing done on the
periodic Green’s function in (10.98) within a MoM solution. In other words, in place of using
in the integral equation kernel ga(r,k0), one use ga(r,k0)A(r), where A(r) is the amplitude
excitation distribution function introduced in Section 10.3.2 that follows the port excitations
of the array and is zero outside the array boundary. This leads to equivalent formulations,
one in space domain [27]-[29] if (10.98) is used and the other one in spectral domain [30]
if (10.99) (or an analogous form for multilayer) is used. We note that, since the windowing
function breaks the shift-invariance form of the array Green’s function, each element solved
by MoM provides different currents and then a different embedded element pattern.

Windowing methods provide good accuracy, especially when the effects of the truncation
is moderate, with a numerical complexity that is almost the same as that of the one for
solving a single periodic cell of the array. This means for low edge excitation of the array,
or for co-linear arrays of dipoles. Therefore, research has been devoted to speed up the
calculation of large finite-array or truncated periodic Green’s functions ga(r,k0)U(r) where
ga(r,k0) is represented as in (10.99) and U(r) is 1 inside the array region and 0 outside. This
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is done by the Truncated Floquet Waves (TFW) method. In this method, the edge effect is
represented by UTD-like diffraction of the Floquet Waves in (10.99) at the array truncation.
The diffraction effects can be asymptotically isolated by canonical problems of semi-infinite
arrays [31]-[33] or corners arrays [34]-[35]. For arrays of relatively simple elements, like
slots or dipoles, asymptotic solutions for semi-infinite arrays enabled the representation of
currents resulting from edge effects with the help of basis functions that cover the whole array
domain [36]-[38]. The TFW method can also explain the effects of global oscillation of the
scan impedance along the array, first observed in [39]. This phenomenon can be explained by
interference between the current of the element in infinite arrays and the diffracted Floquet
wave contributions coming form the edges.

Today, the approximate windowing methods are not so much used, despite they are extremely
fast when used in conjunction with TFW expansions. The reason is the strong evolution
of MoM formulations for large problems such as Fast Multiple Methods (FMM) [40]-[41],
Adaptive Integral Method (AIM) [42], Adaptive Cross Approximation (ACA) [43]-[44], and
incomplete QR methods [45]-[46]. These methods are today able to handle array problems
up to dimensions of twenty by twenty wavelengths. Particularly important in this context is
the significant development of non-iterative methods, based on a reduction of the effective
number of unknowns. These methods consist of aggregating basis functions into relatively
small sets defined over every unit cell of the array [47]-[58].

10.5 Practical array antennas

Antenna arrays can be made with almost any types of antenna elements. Many of them
are for military radar applications, and then there is not so much published on the electro-
magnetic design. Common elements in military systems are waveguides [59], waveguide slot
antennas [60]-[62]. Array antennas can also be very wideband such as several dense array
designs in [63], and the one in [64]. Microstrip antenna arrays are common [65], particularly
in base station [66]. They have also the advantage that they can be made conformal [67]-[68].
The production cost can also be made low for helical and spiral arrays [69], and parallel plate
slot arrays [70]. At millimeterwaves the microstrip technology gives too much losses, so it
can be replaced by other planar technologies such as post-wall waveguides [71], also called
Substrate Integrated Waveguides (SIW) [72], and different gap waveguide technologies are
also under development for use at such high frequencies [73]-[75]. The laminated waveguide
is also attractive [76].

10.6 Exercises

1. Linear dipole array: Consider a linear array of 20 transverse dipoles located with an element
spacing of 0.5 wavelengths at 2 GHz. The dipoles are series fed from a straight rigid dielectric-
filled coaxial line (relative permittivity εr = 2.5). The signal is coupled with each dipole via
directional couplers in a way that the amplitude excitation is the same of all dipoles. The
spacing between the directional couplers is the same as the element spacing.

a) Determine the main lobe direction and the beamwidth.

b) Determine the element spacing needed to get broadside radiation.

c) Use the element spacing in step b) and determine the main beam direction at 2.3 GHz.
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2. Linear waveguide slot array: Consider a linear array of 10 longitudinal slots in the broad
wall of a rectangular waveguide. Each slot is weakly coupled to the waveguide and we assume
that all slots are excited by the same forward travelling wave. Further, we assume no reflections
in the waveguide. Every second slot is located on opposite sides of the center line of the wall,
why? The cut-off frequency of the waveguide is 5 GHz.

a) Determine a formula for the element spacing which is needed in order to get the main
beam in the broadside direction. Evaluate this spacing for a frequency of 7 GHz.

b) Find the main beam direction when the spacing is that evaluated in step a) and the
frequency is 8 GHz.

c) Assume that all the elements are excited with equal amplitude. This can in practice be
done by increasing the offset from the center line along the waveguide. What is the beamwidth
between the two first nulls in the radiation pattern in the plane of the waveguide axis. Evaluate
it both at 7 GHz and 8 GHz.

d) Determine the bandwidth of the antenna when we require that the radiation level in the
broadside direction θ = 90◦ should not vary by more than 1 dB over the frequency band.

3. Linear microstrip array: Consider an array of rectangular microstrip antennas on a very
thin substrate with high permittivity. The radiation pattern of each single patch can be
approximated as that of two magnetic line currents located at each end of the patch.

a) Assume that the two magnetic line currents are so close that they radiate in the same way
as one single incremental magnetic dipole. What is then the radiation pattern in E-plane?
Sketch it.

b) We want to use the above elements in a vertical linear array to get a double 3 dB beamwidth
of 5◦ at broadside in the vertical plane with as few elements as possible. How long does the
array need to be?

c) How many elements do we need in order to avoid grating-lobes when the main lobe points
at broadside?

d) How many elements do we need in order to avoid grating-lobes when the main lobe is
steered to 20◦ from broadside?

e) What will the relative level of the grating-lobe be if we use the element spacing in step d
and scan to 35◦? Evaluate the grating efficiency in dB.

4. Scan impedance of array of two dipoles: Consider two thin half-wave electric dipoles
located side-by-side with a spacing d = .25λ.

a) Assume that each separate dipole is resonant in free space. What is the value of the input
impedance of dipole 1 when dipole 2 is open-circuited?

b) Use Fig. 10.10 to find the value of the input impedance of dipole 1 when dipole 2 is short-
circuited.

c) Find also the input impedance of dipole 1 when the dipoles are excited by equal amplitude
for broadside radiation. What is the reflection coefficient when we feed both of them by a 75 Ω
coaxial line?

d) Assume that we conjugate match the dipoles when they radiate at broadside. (In practice
this can be done by tuning the dipole length to get the scan reactance zero, and using a
quarter-wave transformer to transform the scan resistance to become equal to the characteristic
impedance of the feed line.) We here choose to model this approximately by an equivalent
circuit consisting of a feed line with characteristic impedance equal to the scan resistance at
broadside, and by using a tuned reactance in series with the scan impedance. The latter is
equal to the negative of the scan reactance at broadside. Find the reflection coefficient when
the dipoles are phase-steered to radiate 30◦ from broadside. Find also the reflection coefficient
when they are phase-steered to the opposite side of broadside.

5. Design of circular planar array: We want to design an array with a circular aperture by
using as few rectangular microstrip elements as possible. The elements are located in a regular
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quadratic grid. The array should be phase-steered to 20◦ from broadside in all directions. The
frequency is 10 GHz.

a) Determine the diameter of the aperture both in wavelengths and centimeter when we
require that the directivity shall be at least 43 dB over the whole scan range.

b) Determine thereafter the element spacing and the number of elements needed.

c) What is the 3 dB beamwidth at broadside?

d) The beam at 20◦ has an elliptical cross section. Find the minimum and maximum 3 dB
beamwidths. In which planes do they appear?

6. Design of rectangular planar array: We want to design an array antenna with a rect-
angular aperture by using as few elements as possible. The elements are open rectangular
waveguides in a large ground plane. The waveguide apertures have width w � λ and length
l = 0.6λ.

a) We want the 3 dB half-beamwidth of the array to be 1◦ in H-plane when the array is excited
for broadside radiation. Determine the diameter of the array in H-plane.

b) We want the directivity at broadside to be 45 dB. Determine the diameter of the array
and the 3 dB beamwidth in E-plane.

c) We want to scan the array out to 60◦ from broadside in E-plane without grating-lobes.
There is no scanning in H-plane. Determine the required number of elements in both E- and
H-planes.

d) What is the directivity and beamwidth when the beam is scanned to 60◦ from broadside
in E-plane?

e) Use the number of elements in step c) and determine the directivity when the array is
scanned to 75◦.

7. Beamwidth of steered planar array: Derive the expression in equation (10.76) for the
variation of the beamwidth with the main beam direction. It is most simply derived in the
two planes ϕ = ϕ0 and ϕ = ϕ0 + π

2
.

8. Array of rectangular horns: Consider a large planar array of pyramidal horn antennas with
quadratic apertures with 3λ× 3λ size. The horn is very long, so the phase can be considered
constant over the aperture. Assume that the horns are polarized in y-direction. Assume that
each isolated element is radiating from an infinite ground plane.

a) Write down the expression for the far-field function of each element. Determine the 3 dB
beamwidths in E- and H-plane. Draw the location of the first null of the element pattern into
a sin θ cosϕ, sin θ sinϕ diagram.

b) Find the locations of the grating-lobes and draw them into the same diagram.

c) Determine the relative levels of the grating-lobes when the array radiates in the broadside
direction.

d) Determine the relative levels of the grating-lobes when we phase steer the beam in E-plane
to 10◦ from broadside.

e) Determine the relative levels of the grating-lobes when we phase steer the beam in H-plane
to 10◦ from broadside.
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Chapter 11

Fundamental limitations on
directivity, array gain and
bandwidth

This chapter deals with the fundamental limitations on directivity, radiation efficiency and
gain of antennas with both single and multiple ports, when the antennas are made of lossless
materials. The maximum available directivity of large antennas is given by the common
aperture directivity formula. For small antennas, it is given by the directivity of the Huygens
source. These two expressions are combined in a heuristic manner to a continuous maximum
directivity limitation as a function of the diameter of the smallest sphere that can surround
the antenna [1, 2]. The theoretical limitation is plotted together with directivities of antennas
known to have large directivities, and the results are seen to be very close to the heuristic
limit.

The chapter also deals with fundamental limitations of dense arrays. Dense linear arrays can
theoretically be used to provide superdirectivity, but this remains to be proven in practice.
Their claimed superdirectivity is often lower than what can be obtained with optimized
single-port antennas of the same size. Dense arrays also suffer from severe gain reduction
due to strong coupling to the ports of the neighbouring elements. This gain reduction can
be characterized in terms of a decoupling efficiency, also referred to as embedded element
efficiency, and appears as a reduction of the total radiated power. The fundamental property
of this decoupling efficiency is known from classical papers, and it has recently been verified
by measurements in a reverberation chamber and by simulations.

Finally the chapter discusses the fundamental bandwidth limitations of small antennas in
terms of their so-called radiation Q-factor. This determines bandwidth limitations for the
following classes of antennas: i) single-resonance-type small antennas, ii) wideband gradual-
transition-type small antennas, and iii) wideband cascaded-resonances-type small anten-
nas.
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11.1 Background

Publications on fundamental limitations of small antennas normally study the relation be-
tween the antenna size and its radiation Q-factor [3]-[4]. The Q-factor is originally a measure
of the quality of a narrow band resonator, and it represents the inverse relative bandwidth
of the resonator. For antennas, however, we want normally larger bandwidth so the user-
experienced quality is better if we have a larger bandwidth. Thus, it is always understood
that when dealing with antennas the lower Q the better. The Q is only valid as a charac-
terization method when Q is large, because it is originally based on a series expansion of
frequency variations around the frequency of operation. Therefore, it becomes very ques-
tionable if Q can be used at all to characterize antennas for which it is desirable to have
low Q, because, the accuracy of the characterization method becomes worse when the an-
tenna is better. Also, the overall antenna bandwidth can easily be increased (i.e., Q can be
decreased) by cascading resonance-type antenna elements with small bandwidths (i.e., large
Qs). This makes the radiation Q even more questionable as a fundamental inverse measure
of antenna bandwidth. Nevertheless, we will here explain with reference to [5]: i) How the
radiation Q is related to interpretable quantities such as bandwidth-efficiency product of
single-resonance-type small antennas. ii) How it is related to mismatch factor variations,
and tolerance requirements of multiple-resonance-type small antennas. iii) How it is related
to a radiation cut-off frequency of gradual-transition-type small antennas (related to gradual
cut-off of spherical waves).

We will first overview other fundamental limitations that apply to antennas, such as maxi-
mum available directivity of single-port antennas and radiation efficiency of multi-port an-
tennas, and thereafter discuss the practical consequences of the limitations determined by
Q-factor and size. The main focus will be on small antennas, but the limitations of large
antennas are overviewed as well because by mistake these limitations often are applied to
small antennas. In particular, the efficiency limitations of multiport antennas for diversity
and MIMO systems1 will be overviewed. Their fundamental limitations can be characterized
in terms of the radiation efficiency of each embedded element, i.e., an embedded element
efficiency, and the paper will describe how these limitations are related to the fundamental
limitations of dense arrays outlined in [6], [7] and [8]. This will be described by an exam-
ple. The chapter will also discuss the limitations that apply when dense arrays are used to
generate superdirectivity [9]-[10].

11.2 Maximum directivity of single-port antennas

11.2.1 Large antennas

The maximum available directivity of a large antenna covering a planar area A is well known
to be given by

D0max
=

4π

λ2
A . (11.1)

This formula is only valid when the cross section of the area A is large in terms of wavelength.
In practice, it applies to areas with diameters typically larger than three wavelengths. The

1 See Section 3.3.3.
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Figure 11.1: Fundamental directivity limitations of large antenna (dotted steep line), small single-
port antennas (dotted horizontal line), and heuristically combined to a curve valid for any antenna
size (solid line), together with directivities of some theoretical and practical antennas (squares), all
as a function of the diameter of the smallest sphere that can enclose the antenna including its ground
plane (if any).

formula applies both to large apertures and array antennas. The formula is sometime used
also as a directivity limitation of small antennas, but this is wrong as explained in the next
section. We will herein use the formula in (11.1) as a limitation also in terms of the size of
the minimum sphere that can surround the antenna. If this sphere has a diameter D, we will
use the following expression

D0max =

[
πD

λ

]2

, (11.2)

which agrees with the maximum directivity of a large circular planar aperture. This approach
is justified by reference [11], which shows that the maximum available directivity of sources
inside a large sphere of radius R approaches D0max in (11.2) for large R (R = D/2). The result
in [11] contains also small R corrections to D0max , but these do not converge to the known
4.8 dBi directivity of the incremental Huygens source, see Subsection 11.2.2.
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11.2.2 Small antennas

Short electric dipole antennas have a directivity of D = 1.5 = 1.8 dBi, independent of the
thickness and length of the wire as long as both are much shorter than half a wavelength,
see Section 5.1.4. Similarly, small electric loop antennas (representing incrementally small
magnetic currents) have 1.8 dBi directivity as well. It is very simple to theoretically construct
a small antenna that has 4.8 dBi directivity even in free space without ground plane. This is
the so-called Huygens source that consists of both a short electric and a short magnetic dipole,
see Section 4.4.3. The incremental electric dipole excites the basic spherical TM mode, and the
incremental magnetic dipole excites the basic TE mode. It is easy to show that the Huygens
source represents the specific combination of the short electric and magnetic dipoles that
maximizes the directivity. Such a Huygens source can in practice be constructed from wires
by combining an electric dipole antenna and a loop antenna. Thus, the maximum available
directivity of small antennas is 4.8 dBi. Many practical small antennas show directivities close
to this, such as, e.g., the inverted F antennas. The half-wave dipole in free space has 2.2 dBi

directivity, which is 2.6 dB below the 4.8 dBi limit for even smaller antennas.

11.2.3 Heuristic combination valid for any antenna size

The maximum available directivity of antennas that are neither large nor small in terms of
wavelengths is not explicitly known. Therefore, we herein present a way of combining the two
above-mentioned maximum directivities in a heuristic manner to get a formula that can be
used for all antenna sizes. The following power addition formula seems reasonable:

D0max
=

[
πD

λ

]2

+ 3 ,

{D0max}dBi
= 10 log

[(
πD

λ

)2

+ 3

]
.

(11.3)

The limitations of large antennas, small antennas and this heuristic combination of them
are all plotted in Fig. 11.1. The directivities of some directive practical antennas that are
between 0.2 and 4λ in diameter are also shown. These are the closely spaced folded Yagi
antenna in [12] and the electrically small Yagi in [13], the helix antenna and two short backfire
antennas found in [14]2, as well as two resonant reflector antennas with dimensions found
in [15]3, and the so-called Eleven antenna in [16]4. The antennas are designed to obtain as
high directivity as possible using numerical methods, and the resulting directivities are very
close to the new heuristic limit introduced by (11.3). The electrically small Yagi has even
0.38 dB higher directivity than (11.3), but the reference for it provide only simulated results,
so there may be numerical uncertainties. Also, [13] gives lower experimental directivities of
similar antennas. Furthermore, there is no theoretical foundation for our heuristic formula
in the intermediate range 0.2λ < 2a < 2λ, so it could happen that some practical antennas

2 Backfire antennas make use of strong multiple reflections between one large and one small reflecting
plate to increase directivity.

3 They are making use of weaker multiple reflections between a paraboloidal reflector and its feed to
increase the directivity.

4 The eleven antenna consists in its simplest narrowband solution of two parallel dipoles over a small
ground plane.
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have slightly higher directivity. All the above examples given in [14]-[16] have been verified
by measurements.

11.2.4 Small antennas on large ground planes

Short cavity-backed slot in an infinite ground plane radiates like a magnetic current, but
only on one side of the ground plane, and the radiation pattern on the radiating side is not
affected by the ground plane, so the directivity is the double of that of a short magnetic
current in free space (3 dB higher), i.e., D0 = 2 · 1.5 = 3 = 4.8 dBi. Short vertical monopole on
a ground plane has also 4.8 dBi directivity, of the same reason. In practice these directivities
are high also for quite small ground planes.

Thus, it is possible to make small antennas on large ground planes that have higher di-
rectivities than 4.8 dBi. For example, the directivity of a small horizontal dipole above a
large ground plane approaches 8.8 dBi, see, e.g., [4]. However, when we include the size of
the ground plane in the definition of the smallest sphere, the directivities of such antennas
will normally not come close to the limiting curve in (11.3). An exception is the eleven an-
tenna [7]. This consists in its basic configuration of two parallel dipoles spaced by 0.5λ and
located about 0.15λ over a ground plane. It has 11 dBi directivity when the square ground
plane is wider than 0.7λ, which gives a minimum sphere radius of 1.03λ. This is only 0.3 dB

below the limiting curve.

11.2.5 Planar array antennas

In practice the above formulas apply also to regular antenna arrays when the elements are
combined to one port with a passive combination network, but only if the aperture area A

of the array is defined by (Section 10.3.2)

A = MdxNdy , (11.4)

where M (N) is the number of elements in x-direction (y-direction), and dx (dy) is the
element spacing in x-direction (y-direction), and the element spacings are small enough to
avoid grating-lobes (normally dx < λ and dy < λ are sufficient for broadside radiating arrays).
Very small array antennas that can be located within spheres or diameter smaller than 0.5λ

may easily have directivities up to 4.8 dBi, in the same way as small single-port antennas can
have this.

Eq. (11.4) is valid for a rectangular planar array, but we can readily define an equivalent
diameter of a circular array with the same area, i.e.,

D = 2
√
MdxNdy/π . (11.5)

This array is then governed by the directivity limit in (11.3). The definitions in (11.4) are
illustrated in Fig. 11.2. The radiating elements are illustrated by the solid lines (dipoles
or narrow slots). Note that the definition of the area and equivalent diameter of the array
include the whole unit cell of the edge elements, even if the radiating element itself does not
fill the dashed unit cell. This is very important for the maximum available gain formula to
be used for arrays.
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Figure 11.2: Example of planar array geometry. (a) Definition of unit cell of an element in a regular
planar array. (b) Illustration of the definition of the aperture areas in (11.3) of planar arrays with
rectangular aperture shapes. The radiating elements are illustrated by thick solid lines indicating
narrow waveguide apertures, and the unit cells of the grid are illustrated as dashed boxes. (c)
Illustration of the numbering of the elements used in (11.6) for a 4× 4 array. (d) The S-parameters
of elements 5, 6, 7 and 8 when element 7 is excited.

11.2.6 Superdirectivity

R. C. Hansen uses the following conservative definition of superdirectivity [10]:

“A useful operational definition of antenna superdirectivity (formerly called supergain) is
directivity higher than that obtained with the same antenna configuration uniformly exci-
ted (constant amplitude and linear phase). Excessive array superdirectivity inflicts major
problems in low radiation resistance (hence low efficiency), sensitive excitation and posi-
tion tolerances, and narrow bandwidth. Superdirectivity applies in principle to arrays of
isotropic elements although, of course, actual antenna arrays are composed of nonisotropic
elements”.

Thus, what is left after these restrictions is merely a concept of theoretical interest. Therefore,
superdirective antennas have also only been reported theoretically, and the most “promising”
publications are related to endfire linear arrays. However, publications on such theoretical
superdirective linear arrays report actually much lower directivity than the maximum avail-
able directivity of an optimum more planar antenna structure radiating from within the same
minimum surrounding sphere. This can be seen by comparing the limiting curve in Fig. 11.1
with the results in [10, Tables I and II]. There is one exception: According to [10, Table III]
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a superdirective short endfire array of 0.5λ length can have 5.66 dBi directivity, if it is made
of 9 elements with 0.0625λ element spacing. However, the reported Q = 1.7 · 1014 corresponds
to a relative bandwidth of 1/Q = 0.6 · 10−14, which is completely useless. Also, it seems that
the embedded element efficiency has not been taken into account in the simulations.

Modern computers make it easier to produce simulated results with realistic vector current
sources. It can easily be shown that two small dipoles in a closely spaced (� λ) array, fed 180◦

out-of-phase achieve a directivity of ≈ 5.8 dBi. If the phase of one element is adjusted slightly
away from 180◦, the array can operate in a superdirectivity mode and achieve a directivity of
≈ 7.2 dBi [17]. These directivities are above the limit of the heuristic formula in (11.3), and
this array shows also superdirectivity according to Hansen’s definition.

Arrays with such small element spacing will in practice suffer from large coupling losses caus-
ing a low decoupling efficiency , see Section 11.3. See also [18] where the decoupling efficiency
of a single element, referred to as the embedded element efficiency, has been measured for
a dense Vivaldi array. In principle, all dense arrays suffer from limitations due to mutual
coupling [6]-[8], and this mutual coupling can only be correctly accounted for by properly
including source impedances of the exciting sources on all excited ports and dummy loads
at not excited ports. Unfortunately, it seems that the existing work on superdirectivity till
now does not include source impedances, even though it readily can be included in the oth-
erwise complete formulation in [9]. Such practice can give very erroneous results because
without source impedances, it is possible to enforce any excitation on the elements of an
array, whereas with source impedances the excitations will be affected by the excitations on
neighboring ports so that they cannot be fully controlled. This can be characterized by the
general decoupling efficiency in (11.9). In practice it may not at all be possible to excite
arrays for superdirectivity with realistic source impedances.

11.3 Embedded element efficiency of arrays

11.3.1 Single-port antennas

The radiation efficiency of single-port small antennas can be large if they are made of low
loss materials. However, the losses due to using lossy materials in small antennas may often
appear larger than expected when compared to using the same materials in larger antennas.
The reason is that small antennas are based on radiation at resonance, which makes the waves
bounce back and forth inside the material many times before leaving the antenna.

11.3.2 Multi-port antennas

Small arrays for diversity and MIMO systems may suffer from strong mutual coupling between
the antenna elements. They are different from classical arrays in the sense that the phase
and amplitude excitations (both in transmitting and receiving mode) of the elements are
dynamically adjusted to match the statistical field variations in the environment5. Therefore,
they cannot be impedance matched for one specific excitation. Each single element are used
more or less independently of each other, and therefore they have to be analyzed in their

5 This is done digitally inside the signal processor, but it corresponds to changing the excitation.
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embedded situation, when only one element is excited and the others are terminated with the
port impedances. Therefore, there exists a degradation of the embedded element efficiency
caused by absorption in the source impedances or loads connected to the other element ports.
This efficiency was introduced for diversity and MIMO arrays in Section 3.3.3.

The embedded element efficiencies needed to characterize MIMO arrays represent a funda-
mental limitation caused by mutual coupling. The simplest expression for the embedded
radiation efficiency of port j in an antenna array with MN elements is6

(eemb)j = 1−
MN∑
i=1

|Sij |2 , (11.6)

where Sij is the S-parameter between ports i and j, respectively. The numbering convention
used in this equation is illustrated in Fig. 11.2. Such fundamentally limiting radiation effi-
ciencies are also present in large classical arrays for producing narrow beams7. The embedded
efficiency becomes very low only if the element spacing is very small, such as in dense arrays
for multiple beams. Then, this limitation is known as Steins’s limit with reference to [6]8

and is also thoroughly treated in [7].

In a classical array, the embedded element efficiency can be seen as the ratio between the
realized gain per element of the array and the directivity of one embedded element [7]. For
small element spacings, the embedded element pattern is known to have a cos(θ) shape [7]9.
When the radiation intensity varies as cos(θ) over half space, the power integral in (2.65)
becomes

P = 2π

∫ π/2

0

cos θ sin θdθ = π .

Thus, the corresponding directivity of the embedded element is Demb = 4π/π = 4, i.e., 6 dBi.
The maximum available gain per element of a large array can be found, by using (11.1),
giving

Gemb =
D0max

MN
= 4π

dx
λ

dy
λ
. (11.7)

This means that the embedded element will have a maximum available radiation efficiency
of

eemb =
Gemb

Demb
= π

dx
λ

dy
λ

(11.8)

in a dense array, under the assumption that the directivity always is 6 dBi or larger. This
result originates from the discussions in Hannan’s paper [7], see also [19]. It is an asymptote
valid for both dx and dy being small. Therefore, we will refer to (11.8) as Hannan’s asymptote,
representing the maximum available embedded element efficiency for a dense array. The term
embedded efficiency is justified as long as eemb < 1, corresponding to both dx and dy being
smaller than 1/

√
πλ = 0.56λ, at the same time. The embedded element efficiency has also

been measured for a singly-excited element in a dense focal-plane array [18, Fig. 11]. It
becomes very small for small element spacings, and is already eemb = π/4 = 79 % for planar
arrays with 0.5λ element spacing [7]. The embedded element efficiency has contributions

6 Same as Eq. (3.8).
7 See Section 11.4.
8 This name was proposed in [8].
9 This is due to the cos(θ) projection of the aperture area.
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both from reflections at the singly-excited port, and from lost power coupled into the ports
of neighboring elements. The latter is normally the larger.

When many ports are excited, the embedded element efficiency becomes instead a general
decoupling efficiency . For an array with MN antenna ports in total, of which a subarray
of (MN)exc (≤ MN) ports are used to generate the beam, the decoupling efficiency becomes

edc =
Prad

Pinc
= 1− Pdc

Pinc
= 1−


MN∑
i=1

|bi|2/
(MN)exc∑
j=1

|aj |2
 ,

bi =

(MN)exc∑
j=1

Sijaj ,

(11.9)

where Prad is the radiated power, Pdc is the total power lost in the terminations on the ports10,
and Pinc is the sum of the incident powers on all (MN)exc excited ports of the antenna. Further
|aj |2 is the forward power incident on an excited port j, |bi|2 is the backward power leaving
any port i, and Sij is the usual scattering matrix element between the ports i and j when
all the other ports are match-terminated. Hence, MN − (MN)exc ports are unexcited. This
efficiency plays a major role when characterizing focal plane arrays [18].

11.4 Gain limitations of regular antenna arrays

The embedded element efficiency plays via (11.8) a major gain-limiting role of dense regular
array antennas, in the same way as the grating efficiency in (10.42) does for sparse arrays [20].
The following example illustrates this. With regular arrays we mean here an array with
elements in a regular grid with element spacings dx in x-direction and dy in y-direction, as
illustrated in Fig. 11.2.

The example is an array of 32 × 32 open-ended waveguides, each with aperture dimensions
a = 0.505λ and b = 0.067λ along x- and y-directions, respectively. Thus, M = 32 and N = 32

in Fig. 11.2. The element spacing is fixed to dx = 0.67λ in x-direction (H-plane) and it varies
from 0.1λ to 10λ in y-direction (E-plane). Thus, when the element spacing is 0.1λ, the slots
are located very close to each other, and when the element spacing is 10λ they are located
very far apart.

The total area of the array is given by (11.4), and the maximum available directivity of
this area is given by (11.1). This is the straight solid diagonal line plotted in Fig. 11.3
marked “maximum available”. This represents of course also the maximum available realized
gain.

The realized gain of the whole array and its elements have been found by three different
numerical approaches for each dy, by using a commercial full wave code. The term full wave
means that no approximations have been used in the simulation methods, except for the
numerical discretization. The three approaches are:

10 This includes the source impedances on the excited ports.
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Figure 11.3: Realized gain of 32 × 32 element regular array of open-ended waveguides in infinite
ground plane when the element spacing in H-plane is dx = 0.67λ for different element spacings in
E-plane, evaluated by different methods.

a) Infinite array approach This means simulating a unit cell of the array with periodic
boundary conditions. This corresponds to exciting all waveguide elements with the same
amplitude and phase. The actual finiteness of the arrays due to the 32× 32 elements is taken
into account by a truncation of the infinite array, neglecting so-called edge effects. This
means that elements close to the edge of the arrays are assumed to radiate the same way as
any other element. The approach is known to be very accurate for large arrays like this, both
regarding the input S-parameter (being equal for all elements) and the far-field function of
the whole array. The realized gain is plotted as the curve marked “infinite array approach”
in Fig. 11.3.

b) Embedded element approach An element in the center of the array is simulated when (in
principle) all the other elements are present and terminated. Our elements are rectangular
waveguides, so a termination means that there is an ideally matched load at the end of the
waveguide. The results of the simulation are the far-field function, directivity, and realized
gain Gemb of the embedded element. The realized gain of the total array is

Garr = MNGemb . (11.10)

This is plotted as the curved marked with “MN × embedded element gain” in Fig. 11.3. The
curve is seen to be almost identical to the “infinite array approach”, which it should be. The
discrepancies when dy is between 0.3λ and 0.8λ are due to the numerical accuracy.

c) Isolated element approach This is one open-ended waveguide in an infinite ground plane.
The results are its input S-parameter, far-field function, and realized gain Giso. An approxi-
mate array gain can be obtained from

Garr = MNGiso . (11.11)
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The result is shown as the curve called “asymptote from isolated element gain” in Fig. 11.3.
The directivity of the isolated element can in our case also be found analytically to be 5.2 dBi

by using equations (5.82) and (5.85).

Fig. 11.3 shows that the computed realized gain with the infinite array method approaches
the isolated element asymptote in a slow and periodic manner for large dy. The slow conver-
gence is due to all the grating-lobes appearing with periodic intervals when dy is larger than
1λ11. They have a large effect in E-plane because the isolated element pattern of a slot is om-
nidirectional in E-plane. Each new grating-lobe causes a sudden reduction in gain. Therefore,
the graph shows dips that appear with regular intervals when dy increases, corresponding to
the sudden appearance of grating-lobes along the array in E-plane.

The effect on the array gain due to the sudden appearance of grating-lobes can easily be mod-
eled by multiplying the maximum available realized gain by the grating efficiency in (10.42),
i.e.,

Garr =
4πMNdxdy

λ2
egrt . (11.12)

When evaluating this we assume that the far-field function of an isolated slot is uniform
in E-plane (see (5.82) and (5.85)), and then the expression becomes completely analytical
and can be evaluated very easily. The result is the curve marked “maximum with grating
efficiency” in Fig. 11.3. We see that this is able to model the periodic variation of realized
gain very well, except precisely at dy/λ for which the grating-lobes suddenly appears, i.e.,
at each multiple of wavelengths. Therefore, the grating efficiency in (10.42) gives a good
understanding of losses in directivity and realized gain due to grating-lobes.

Let us look more carefully at the realized gain for small element spacing dy/λ, or rather the
related embedded element efficiency. Fig. 11.4 shows embedded element efficiencies evaluated
in different ways. They are evaluated by Hannan’s asymptotic formula in (11.8), and by using
the definition of the embedded element efficiency for a lossless multi-port antenna in (11.6).
The latter is evaluated numerically “from all S-parameters”, resulting from the simulations
with the embedded element approach in b) above. Fig. 11.4 also shows the embedded element
efficiency when we correct Hannan’s asymptote by the mismatch factor of the fully-excited
array, i.e., the mismatch factor when all elements are equally excited. The forth curve is
marked “gain per element minus 6 dB”. This is obtained by taking the result from the infinite
array approach, dividing it with MN to get the realized gain per element, and removing the
6 dB directivity of a single embedded element in a dense array. The latter was found when
deriving (11.8), and originated from Hannan.

The figure shows that Hannan’s asymptote represents the highest efficiency for all dy/λ.
Thus, it is the fundamental limiting factor describing the fact that the embedded element
will have low radiation efficiency for dense array. When we correct this with the mismatch
factor we get exactly the same result as obtained from the full wave simulation of “gain per
element minus 6 dB”. This shows that it is very easy to correct for Hannan’s asymptote to
get the actual realized gain in dense regular arrays, but we need to know the S11 of the array
elements for the all-excited case. Finally, we see that the actual embedded element efficiency
evaluated from (11.6) always is lower than the three other results, and approaches them the
smaller dy/λ is. Eq. (11.6) can never be larger than unity (0 dB) by definition. However,
the three other curves can be larger than unity when the assumptions dx � λ and dy � λ

for which they are evaluated, are not satisfied. This assumption is implicit also in the full

11 According to (10.78).
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Figure 11.4: Embedded element efficiency of the same array as in Fig. 11.3, evaluated by different
accurate and approximate methods.

wave efficiencies when assuming that the directivity of the embedded element is 6 dBi. If the
directivity is larger, the computed value of the embedded element efficiency will be lower and
satisfy the physical requirement of eemb ≤ 1. Thus, it is reasonable to believe that embedded
elements in dense arrays always will have directivities equal to or larger than 6 dBi.

The most important conclusion from Fig. 11.4 is that the embedded element efficiency is a
major factor contributing to the realized gains of dense array antennas. Unfortunately, this
is not so well known, and, e.g., research on superdirectivity has not taken this into account,
although the understanding of this fundamental limiting efficiency dates back to Hannan in
1964 [7].

11.5 Bandwidth limitations due to antenna size

The physical limitations of small antennas have always been of concern to antenna engineers,
often expressed in terms of questions like “How large must an antenna be in order to radiate
efficiently?” or “What is the available bandwidth of a small antenna of a certain size?” The
mutual relation between size and bandwidth has been known since the early days of radio
wave communications. At that time there were no computers and therefore all theoretical
studies were based on mathematical analysis. Similarly, practical designs were entirely based
on experiments without any computational support.

The above facts made it very difficult to predict frequency variation and thereby bandwidth
before the antenna actually was built. However, it was possible to estimate bandwidth by
calculating the so-called Q-factor from analytical expressions for both the dissipated power
and stored time-averaged energy at the resonance frequency of the antenna [21]-[22]. Such
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approach for estimating frequency dependences was known from prediction of quality of
circuit resonators [23]-[24], which naturally is defined by

Q = f
0
/(2∆f) , (11.13)

where f0 is the resonance frequency and 2∆f is the full 3 dB bandwidth. It was shown
analytically that this could be determined from

Q = 2πf
0

Wave

P
, (11.14)

where Wave is the time averaged stored electric and magnetic energy at f0 , and P is the total
dissipated power at f0 .

Half-wave dipoles and slots are resonant by nature, and smaller antennas become resonant
at least after impedance matching by external components. Therefore, (11.14) was used even
to predict Q and relative bandwidth 1/Q of small antennas, by using the radiated power as
the dissipated power P in (11.14) because it appears as losses in the radiation resistor in the
equivalent circuit of the antenna.

It is very difficult to get useful bandwidth out of small antennas, and therefore the practice
of evaluating Q-factors lend itself to studying fundamental bandwidth limitations of small
antennas. The lowest limiting radiation Q could be evaluated from Maxwell’s equations
without knowing the exact shapes of the antennas [21]-[22]. When studying fundamental
bandwidth limitations of small antennas in terms of the intrinsic radiation Q, it is important
to be aware of the fact that even if Q stands for quality, it is actually the inverse of Q and the
radiation efficiency that represents the quality when dealing with antennas. Therefore, the
Q term itself is misleading. Still, the treatment of fundamental limitations of small antennas
in terms of their radiation Q is common practice also today [25]-[29].

The Q-limitation is normally expressed in terms of the radius of the smallest sphere that
can enclose the antenna, but recently this has been extended to any limiting shape [29].
Different authors derive different formulas for Q, such as one Q for small antennas radiating
circular polarization [30] and another Q for small antennas exciting both TE to r and TM to
r spherical modes with arbitrary polarization [27], where r is the radial direction.

The present section aims explaining what this limiting intrinsic radiation Q means in terms of
practical bandwidth limitations of three different types of small antennas: single-resonance-
type, gradual-transition type, and cascaded-resonances-type. The most important quality
measure of a small antenna, besides its relative bandwidth, is its total radiation efficiency,
i.e., the total radiated power relative to the maximum power available at its terminal when
the antenna is matched to its port impedance. This includes both the mismatch factor and
the radiation efficiency due to dissipation losses. The mismatch factor can be improved by
impedance matching techniques, whereas the dissipation normally is associated with lossy
materials. Small antennas often have low efficiencies and narrow bandwidths [31]. This low
efficiency makes the bandwidth larger than the intrinsic limit, in the same way as a loaded
resonator has smaller Q than an unloaded one. In the case of losses the intrinsic radiation
Q actually becomes a physical limitation on the bandwidth-efficiency product, in agreement
with the theory of unloaded and loaded resonators [24]. In principle there are two basic
approaches for making antennas radiate well:

a) The resonance approach: Small antennas like dipoles and slots have natural electromag-
netic resonances when they are half a wavelength long. These resonance frequencies can
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Figure 11.5: Equivalent circuit for a small electric current antenna such as a short dipole with both
dissipation losses RL and radiation losses Rrad.

be reduced, e.g., by locating materials with high permittivity close to the antenna, but the
bandwidth is reduced. Non-resonant small antennas will normally also be made resonant
by impedance matching them with capacitors or inductors. Furthermore, many resonant
antennas can be cascaded to get a wideband antenna.

b) The gradual transition approach: This is based on changing the geometry gradually from
that of the feeding waveguide or transmission line to a geometry that makes the waves
smoothly transit to free space, such as this is done in, e.g., flared horns (waveguide transition)
and Vivaldi tapered slot antennas (slot line transition).

The limitations of resonance-type antennas can be determined by the inverse-Q limitation on
the bandwidth-efficiency product, whereas it is not obvious that the limitations of wideband
gradual-transition type antennas are determined by this. The gradual-transition-type an-
tennas are limited by the intrinsic radiation Q expression, but that this determines a lowest
frequency of operation rather than an efficiency-bandwidth limitation. This lowest frequency
of operation is the same as the gradual cut-off frequency of spherical waves known from
EM field theory [32], [33]. The size of the surrounding sphere at which this gradual cut-off
appears has also been referred to as a radiansphere [34], [35].

Furthermore, it is well known that the bandwidth of resonance-type antennas can be improved
by making use of several resonances coupled in cascade, as series or parallel resonances. We
will show that ideally any bandwidth can be obtained in such cases, and that the intrinsic
radiation Q instead becomes a measure of how many cascaded-resonances is needed to cover
a certain frequency band.

The results in this chapter are valid for small antennas, but also for “not-so-small” antennas
if only the basic spherical TE or TM to r modes are excited, or both of them.

11.5.1 Intrinsic radiation Q for TE, TM and TE&TM

The intrinsic minimum radiation Q of a lossless antenna exciting the basic TM to r spherical
mode was first derived by Chu [21], and repeated later in a different way by Collin and
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Rothschild [22], to be

Q
TM

= Q
TE

=
1

(ka)3
+

1

ka
, (11.15)

where a is the radius of the smallest sphere that can surround the antenna and k = 2π/λ

is the wavenumber. This limiting Q is valid for TM case under the assumption given by
the equivalent circuit in Fig. 11.5, that the capacitive impedance of the small antenna (of
electric current type) is tuned out by an external inductance in series with the capacitance.
The Q for TE case is given by the same formula, and can be excited by a magnetic current
such as a slot or small circular electric current ring. These have equivalent circuits in the
form of parallel resonances, and they need to be tuned out by external capacitors. Later
Harrington showed that the Q is a factor 2 lower for circular polarization if two orthogonally
polarized TE and TM spherical modes are excited in quadrature [30]. He derived it using the
same approximations as Chu did for linear polarization. Recently McLean recalculated the Q
directly from the fields for both linear and circular polarization [25]. D.H. Kwon [27] showed
that the TE and TM modes also can be combined to a directive linearly polarized pattern
to give the same low Q as for Harrington’s circularly polarized case. This combination of
TE and TM sources actually corresponds to a so-called Huygens source, as given, e.g., in
Section 4.4.3. Actually, any combination by which the basic TE and TM modes are excited
equally strongly will give the same lower intrinsic radiation Q, i.e.,

Qint = Q
TE&TM

=
1

2

(
1

(ka)3
+

2

ka

)
. (11.16)

This can readily be seen by looking into the derivations in both [27] and [30]. The reason is
that the TE and TM modes are orthogonal, and thereby the power integrals over each one of
them can be added when both are excited.

11.5.2 Single-resonance-type small antennas

We first consider a single-resonance-type antenna. At resonance, the equivalent circuit for a
small electric current element can be simplified as shown in Fig. 11.5, where we have modelled
losses as a resistor RL in series with the radiation resistance Rrad. The antenna is matched
at frequency f0 by a lossless inductor with an inductance of L = 1/ω2

0
C, where ω0 = 2πf0 .

The total input impedance including the matching inductor becomes

Zin = Rrad +R
L

+
1

jωC
+ j

ω

ω2
0
C
. (11.17)

The equivalent circuit is the same as that of a resonator, so it becomes natural to express
Zin in terms of Q and the resonance frequency f0 = 1/(2π

√
LC), in the same way as for

resonators [23], giving

Zin = (Rrad +R
L

)(1 + jQ
0

(f − f
0
)

f
0

(f + f
0
)

f
) , (11.18)

where Q0 is the Q at the resonance frequency

Q0 =
1

ω0(Rrad +R
L

)C
.
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We see that there are two contributions to this Q; from radiation losses in Rrad and from
dissipation in RL . Therefore, it is convenient to separate Q0 into the intrinsic radiation Q

of the antenna, denoted Qint and the Q contribution due to dissipative losses, denoted QL ,
according to

1

Q0

=
1

Qint
+

1

Q
L

; Qint =
1

ω0RradC
, Q

L
=

1

ω0RL
C
. (11.19)

There are no other approximations in (11.18) and (11.19) other than those represented by
assuming Rrad, RL , L and C constant in Fig. 11.5.

Let us now assume that the antenna is ideally matched at the resonance frequency to a
transmission line with characteristic impedance Z0 = Rrad + RL . Then, the input reflection
coefficient becomes

r =
Zin − Z0

Zin + Z0

=
−jQ

0

(f−f
0
)

f0

(f+f
0
)

f

2 + jQ
0

(f−f
0
)

f0

f+f
0

f

,

|r|2 ≈
|Q

0

(f−f
0
)

f0
|2

1 + |Q
0

(f−f
0
)

f0
|2

for (f − f0)� f0 .

(11.20)

The total radiation efficiency can be expressed as

etot = ererad ,

er = 1− |r|2 ≈ 1

1 + |Q
0

(f−f
0
)

f
0
|2

for (f − f
0
)� f

0
,

erad =
Rrad

Rrad +R
L

=
Q

0

Qint
,

(11.21)

where erad is the radiation efficiency due to dissipation in RL and er is the mismatch fac-
tor.

We see from (11.20) and (11.21) that Q determines both the ohmic loss efficiency and the
bandwidth of the mismatch factor. It would be convenient to define the bandwidth in terms
of a specific value of er. We see that when

|f − f
0
|

f
0

=
1

Q
0

, (11.22)

the input power reflection coefficient is 0.5 and the mismatch factor −3 dB. This means that
the full bandwidth between the −3 dB values becomes

2∆f

f0

=
2

Q0

. (11.23)

This may look like it does not agree with (11.13), but it does, because the resonator now has
an external load equal to the internal load, so the Q degrades by a factor 2. If we introduce
the radiation efficiency erad in (11.21) we get

2∆f

f
0

erad =
2

Qint
. (11.24)
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Figure 11.6: The theoretical maximum available relative bandwidth between −3 dB points of a
small antenna versus radius of smallest surrounding sphere a for three different radiation efficiencies.

This means that the inverse intrinsic radiation Q, i.e., 1/Qint, in (11.16) represents a fun-
damental limitation on the bandwidth-efficiency product of a small single-resonance-type
antenna. Therefore, if we reduce the efficiency by introducing losses, the bandwidth will
increase in such a way that the bandwidth-efficiency product is constant. This means that
we need to know both the bandwidth and efficiency of a small antenna in order to determine
how close it is to the intrinsic size limitation.

The results are plotted in Fig. 11.6 for three values of the radiation efficiency erad. We
see that antennas with low radiation efficiency have the potential of larger bandwidth, and
visa versa. The simple approximate limitation formula in (11.24) is valid up to a radius of
a = 0.2λ.

11.5.3 Wideband gradual-transition-type small antennas

Let us now consider the equivalent circuit in Fig. 11.7, which is the same as that in Fig. 11.5
but without any matching circuit. We will assume that this equivalent circuit is valid over
such a wide and high frequency band that no matching network is required. In other words,
we have been able to impedance match the antenna by gradually adjusting the antenna
geometry so that the basic spherical TE or TM mode is excited, or both. Still, in this way
we cannot remove the low frequency mismatch represented by the capacitance C, due to the
fundamental or intrinsic limitations. Then, if we in the same way as in Section 11.3 use
a characteristic impedance of the feed line of Z0 = Rrad + RL , we get the following input
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Figure 11.8: Illustration of mismatch factor with gradual radiation cut-off for the antenna in
Fig. 11.7. The minimum available gradual radiation cut-off frequency fcut for the lossless curve
is determined by (11.26) and related to the intrinsic radiation Q in (11.15).

reflection coefficient and mismatch factor from (11.20) and (11.21)

r =
Zin − Z0

Zin + Z
0

=

1
jωC

2(Rrad +R
L

) + 1
jωC

, |r|2 =
| f0

2fQ0
|2

1 + | f0

2fQ0
|2
,

er = 1− |r|2 =
1

1 + | f0

2fQ0
|2
.

(11.25)

The radiation efficiency erad due to dissipation in RL is the same as before. Note that we
have kept the Q in the expressions, even though we here do not deal with a resonance. This is
convenient, because we are dealing with fundamental limitations that are expressed in terms
of Q. Also, the intrinsic Qs in (11.15) and (11.16) have the same 1/f variation for large
frequency as we get from the Q0f0/f variation in (11.25), so the equivalent circuit should be
quite good as a fundamental limitation at least for the lossless case.

We see that the frequency f
0

at which Q0 = 2 in (11.25) plays the role of a gradual radiation
cut-off frequency, at which the most of the available power radiates. To emphasize this
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approach, let us introduce an intrinsic radiation cut-off frequency by setting Q = 2 in (11.15).
This gives

ka = 1→ λcut = 2πa , fcut = c/λcut , (11.26)

where c is the velocity of light. Using erad in (11.20) and (11.26), we can express the mismatch
factor in (11.25) as

er =
1

1 + |eradfcut/f |2
. (11.27)

er in dB is plotted as a function of relative frequency f/fcut in Fig. 11.8. We see that in
the lossless case the mismatch factor is −3 dB at the frequency of radiation cut-off. We
see also that the apparent gradual cut-off change to lower frequency (i.e., improve) when
the losses increase (mismatch factor decrease). The concept of gradual cut-off is known
from electromagnetic field theory for spherical modes [33] and is also mentioned in [30]. The
gradual cut-off from field equations for spherical TE and TM modes are studied in [33, Sec. 6-
4]. Using this together with [33, Eq. (1-68)-(1-70)] we see that we can at a given radius define
a gradual cut-off frequency at which the real and imaginary parts of the wave impedance are
equal, corresponding to Q = 1. This appears from the approximate figure in [33, Fig. 6-
6] approximately when ka = 1 which is in reasonable agreement with our equations. The
discrepancy may be due to the fact that the Q formula in (11.14) is approximate. Smaller
discrepancy could be obtained by calculating more accurate Q values using the spherical mode
formulas in [33]. Thus, the gradual cut-off of the mismatch factor of gradual transition-type
antennas is related to the gradual cut-off of spherical modes.

Practical examples of wideband gradual-transition-type antennas are Vivaldi antennas [42],
self-grounded bowtie antennas [43]-[44], dual- and quad-ridge horn antennas [45], and spiral
antennas [46].

11.5.4 Cascaded-resonances-type small antennas

In Section 11.3 it was shown that the bandwidth of a small antenna can be increased by
introducing losses. This is in most applications not acceptable. A more acceptable way is to
make use of multiple resonances that are spaced in frequency in such a way that a continuous
frequency band is obtained. A typical example is the log-periodic dipole array [36]. A
special log-periodic solution in which the radiation appears orthogonal to the log period is
the ”eleven antenna”, consisting of two half wavelength spaced log-periodic folded dipole
arrays located over a ground plane [37]. In this configuration the bandwidth is increased
upwards by adding more resonant folded dipole pairs without affecting the antenna volume.
The highest frequency limit depends mainly on manufacturing issues as the dipoles and their
feed structure becomes very small. In principle, this technique for increasing bandwidth
would also be desirable in smaller antennas. Therefore, we look into the limitations that
apply to the cascading of several resonances logarithmically displaced in frequency.

We choose to simplify the study to series RLC resonance circuits connected in parallel12.
The resonance frequencies are scaled by a factor k in a log periodic manner as shown in
Fig. 11.9. The Q is equal for all resonators and the resistance is fixed to 50 Ω, which also is

12 Note we will neglect all kinds of mutual couplings between circuits, but the approach is still useful
for understanding how cascaded-resonances-type antennas behave, which we can judge well after having
experience with the practical design of several eleven antennas [37].
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Figure 11.9: Illustration of cascaded parallel RLC resonance circuits log-periodically scaled in
frequency to increase the bandwidth over which power is absorbed in the resistors and not reflected
at the input. The resonance frequencies are log-periodically scaled with a factor k, and the Q is the
same for all resonators.

the system impedance. If the scaling factor is very large the antenna will obviously behave
like a multiband antenna with the same number of bands as resonators. However, the scaling
factor can be decreased to make a large continuous band as shown in Fig. 11.10. The optimum
scaling factor depends on the requirement on the mismatch factor. The spacing between the
resonances must be smaller for stricter impedance matching requirements.

The numerical study showed that the mismatch near the edges of the log-periodic array is
different from centrally located resonators. Therefore, the increase of bandwidth is smaller
than what would be expected, see Fig. 11.10. Only the bandwidth of the largest centrally
located band is considered here. A summary of the bandwidths for different numbers of
resonators and different scaling factors is found in [1]. The resistance in the resonators needs
to be changed when the scaling factor is small. This can be understood by considering two
extreme cases. If the scaling factor is large, the bands of different resonators will not affect
each other so that the resistance in each resonator should be 50 Ω for best matching. On
the other hand, if the scaling factor equals 1, the resonance frequencies will be the same for
all resonators. The resistors will then be connected in parallel, and the optimum value will
be 50 Ω times the number of resonators. For choices of scaling factors between these two
extremes, the resistance will be affected mostly by the closest resonators and will need to be
increased a bit to enable matching to the 50 Ω feed line. Such a detailed study goes beyond
the scope of this section.

By assuming that each resonator has a relative bandwidth which is inversely proportional to
its Q, and by equating the upper and lower frequency limits for two adjacent resonators, the
scaling factor can be obtained as:

k =
2Q+ ξ

2Q− ξ ≈ 1 +
ξ

Q
, (11.28)

where ξ is a constant which specifies the required overlap between the bandwidths of each
resonator. It depends on the chosen requirement for the return loss and the smoothness of
the mismatch factor curve. The simulations in [1] show that ξ ≈ 3.3 when a −3 dB input
reflection coefficient is required, ξ ≈ 2.1 for −6 dB and ξ ≈ 1.6 for −10 dB. This means that
a good initial value for k can be found from the Q of the resonators, which can then be
subject to further optimization. If the scaling factor is increased too much, the bandwidth
will split in several subbands and thereby cause degradation in the continuous bandwidth.
In practice, the scaling factor should be chosen slightly smaller than the initial value found
from (11.28).
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Figure 11.10: Input reflection coefficient and mismatch factor of the cascaded log-periodic resonator
array in Fig. 11.9 for six resonators when k = 1.027 and Q = 60.

The concept of intrinsic Q has also been found to work quite well for estimating limitations
on cascaded-resonances-type antennas, when the resonances are spaced far away from each
other [38]. By definition Q is only valid for each single resonance. However, Fig. 11.11 shows
that the Q of a resonator (and thereby also the intrinsic Q of a single-resonance-type antenna)
determines the number of resonances needed to continuously cover a certain frequency band
when designing cascaded-resonances-type antennas. Therefore, even if the intrinsic Q is
large, corresponding to very small antennas, the overall bandwidth can be made large by
such cascading of log-periodically scaled resonant small antennas. Q = 30 corresponds to a
diameter of the smallest surrounding sphere of 0.1 wavelengths, and Q = 45 corresponds to
0.09 wavelengths.

The intrinsic Q will also determine the slope of the return loss and the mismatch factor at
the lower and upper ends of the operational frequency band and the ripples within the band,
as seen in Fig. 11.10. A larger Q corresponds to larger slope and faster ripples.

11.5.5 Summary

The intrinsic radiation Q is a fundamental limitation on the bandwidth-efficiency product
of a single-resonance-type small antenna, more specifically on the achievable relative −3 dB

bandwidth of the mismatch factor times the radiation efficiency. Q = 2 corresponds to
the lowest available gradual cut-off frequency, fcut = c/(2πa), of a gradual-transition-type
antenna, and this is the same as the value of the gradual cut-off of basic TE and TM spherical
modes at which the stored energy is equal to the radiated energy. The intrinsic radiation
Q determines the number of resonances needed to cover a certain frequency band with a
cascaded-resonances-type small antenna. All these three cases are summarized in Fig. 11.11.
The antenna size is constant in the figure, given in terms of the fcut. Thus, the figure
illustrates the difference in maximum available bandwidth for single- and multiple-resonance
type and gradual-transition type antennas with the same physical size, when they operate at
different frequencies. Notice that the mismatch factor is −3 dB for the gradual-cut off case
at f = fcut.
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Figure 11.11: Mismatch factor of different hypothetical antennas of equal physical size in terms
of the radius a of the smallest surrounding sphere, representing the maximum available bandwidth.
The antennas are: A single resonant antenna resonant at f/fcut = 1, i.e., Q = 2. A single resonant
antenna resonant at f/f0 = 0.1, i.e., Q = 10. A gradual transition antenna with the lowest possible
cut-off, Q = 2. A cascaded resonance-type antenna with five resonances, Q = 2 for each resonance
and k = 2. And, a cascaded resonance-type antenna with five resonances, Q = 10, k = 1.2.

Note that the Q is determined by (11.13) if we know the bandwidth between the −3 dB points
of the mismatch factor, and the relation to the size and radiation efficiency is given by (11.16)
and (11.24). The mismatch factor varies quadratically with frequency around the resonance
f

0
. Therefore, if we want the bandwidth B corresponding to Q at another dB level (e

B
)dB of

the mismatch factor e
B

, we can use the relation

∆f

B
=

√
−3 dB

(e
B

)dB

.

11.6 Complementary comments by S. Maci

Some authors define the quality factor by (11.14) rather than by (11.13), but its physical
background is better illustrated by (11.14). There is also an alternative definition using either
Q = 2ω0We/P or Q = 2ω0Wm/P for We > Wm or Wm > We, respectively, where We (Wm)
is the average stored electric (magnetic) energy and P is the total dissipated power of the
resonator at the tuning frequency ω

0
. When dealing with antennas, the dissipated power is

assumed to be the sum of ohmic losses in the antenna and radiated power. If this is replaced
by the radiated power only, we get the minimum bound on Q, i.e., the intrinsic Q. Indeed,
since We = Wm, the total energy is 2We = 2Wm at a tuning frequency ω

0
.

The Chu limit in (11.15) can be found by using two assumptions. First, by assuming that
the field outside the minimum sphere is equal to the dominant spherical TM01 (TE01) mode,
i.e., the mode excited by an elementary electric (magnetic) dipole. Elementary dipoles are
classical names of what herein is called incremental dipoles. This indeed implies the minimum
reactive energy around the antenna. A further reduction of the intrinsic Q by a factor 2
(see (11.12)) is obtained by exciting TM01 and TE02 modes simultaneously. This becomes a
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Huygens source, but only for a specific phase and amplitude balance between the two sources.
Second, by using that the energy inside the minimum sphere is zero. This assumption gives
the minimum possible Q. Therefore, in order to arrive as close as possible to the Chu limit
one can design an antenna which radiates almost zero field inside the minimum sphere, for
instance by synthesizing equivalent currents on a small spherical surface [39].

The maximum directivity of an antenna is in [11] derived by a spherical wave expansion,
giving rise to the simple formula

D0max
≈ N2 +N ,

where N is the maximum radial index of significant spherical harmonics radiated by the
antenna. For any source, this number is related to the minimum sphere. In fact, it can
be seen that the n-indexed Hankel function (which is the radial constituent of the spherical
harmonics) starts to decrease rapidly when its index n surpasses the argument kr. Therefore,
the n-indexed harmonics radiated by any source of radius a with n > ka, contributes only
to the reactive energy very close to the minimum sphere and they are not significant after
moving just a fraction of wavelengths away from the surface of the minimum sphere. This
gives

D0max ≈ (ka)2 + ka ,

The above expression is accurate for ka > 3. Note that the dominant term of this expression
when the radius a is large, coincides with the one in (11.2).

The minimum sphere of a source is also related to the concept of degrees of freedom (DoF)
of the field. This number can be defined as the sufficient and non-redundant number of
samples of an electromagnetic field on a surface S around the sources, from which one can
fully reconstruct the field within a predetermined error margin. A general way to determine
the DoF is based on the evaluation of the significant singular values of the radiation operator
which maps the currents on a source boundary onto the field radiated on the observation
domain. Since the singular values decrease exponentially after a certain critical value is
reached, the number of DoF is practically independent of the required precision [40]-[41]. If
the observer is at a certain small distance from the sphere, the DoF is equal to the number of
significant TE/TM spherical harmonics radiated by any source inside a minimum sphere. By
analogy with the Shannon theorem, the number of DoF can be seen as two times the surface of
the minimum sphere in terms of half-wavelengths square; namely NDoF = 2Σ/(λ/2)2 , where Σ

is the surface of the minimum sphere, and the factor 2 arises from the need of representing the
fields by two orthogonal polarizations. Comparing the last formula with the one of maximum
directivity, it is also seen that the maximum directivity is approximately half the number of
DoF of the field in the full space.
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Chapter

Appendices

A Derivation of vector integral forms of E- and H-fields

We will here show how the vector integral forms of the E- and H-fields in Section 4.2 can be
derived from the more common vector potentials A and F. The magnetic vector potential is
given as an integral over J(r′) by (4.22). The H-field can be found from A by using

H
A

=
x

ρ

dH
A

; dH
A

= (∇× (ψJ))dS′ . (A.1)

Applying a known vector identity we can write (A.1) as

dH
A

= [(∇ψ)× J + ψ(∇× J)]dS′ , (A.2)

where the last term is zero because the differentiation is with respect to the unprimed obser-
vation coordinates, whereas the current is a function of the primed source coordinates only.
Since ψ is a scalar function of R, we get

∇ψ =
dψ

dR
R̂ ;

dψ

dR
= −jkR+ 1

R
ψ = −jk

[
1 +

1

jkR

]
ψ , (A.3)

which finally gives

dH
A

= (J× R̂)jkC
N

ΨdS′ ; C
N

=

[
1 +

1

jkR

]
. (A.4)

The electric field is given by (4.25) with F = 0. This gives

dE
A

= −jωµψJdS′ − j 1

ωε
∇[∇ · (ψJ)]dS′ . (A.5)

By using a known vector identity we can develop the second term further to get

∇[∇ · (ψJ)] = ∇[J · ((∇ψ) + ψ(∇J))] . (A.6)
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The last term is zero because the differentiation is with respect to the observation coordinates
whereas the current is a function of the source coordinates only. Further, by using (A.3) we
get

∇[∇ · (ψJ)] = ∇
[
J · ∂ψ

∂R
R̂

]
= ∇

[
J
R

∂ψ

∂R

]
= ∇(J

R
)
∂ψ

∂R
+ J

R
∇
(
∂ψ

∂R

)
, (A.7)

where JR = J · R̂. The gradient to J · R̂ shall be evaluated by differentiation with respect to
the observation point coordinates. Therefore,

∇(J · R̂) = J · (∇R̂) = J ·
(
∇ 1

R
R

)
. (A.8)

By using another known vector identity we get

∇(
1

R
R) =

1

R
∇R + R∇

(
1

R

)
=

1

R
(x̂x̂ + ŷŷ + ẑẑ) + R

(
− 1

R2

)
R̂ . (A.9)

Therefore,

∇(J · R̂) =
1

R
[J− (J · R̂)R̂] . (A.10)

Furthermore, we need

∇ ∂ψ
∂R

=
∂2ψ

∂R2
R̂ = −k2

[
1 +

2

jkR
− 2

(kR)2

]
ψR̂ . (A.11)

Inserting (A.10) and (A.11) in (A.7) and using −jωµ = −jk2/(ωε) finally gives

dE
A

= −jηk{JC
N1
− (J · R̂)R̂C

N2
}ψdS′ , (A.12)

with

C
N1

=

[
1 +

1

jkR
− 1

(kR)2

]
, C

N2
=

[
1 +

3

jkR
− 3

(kR)2

]
.

B Useful Series Expansions and Integrals

1

1 + x
≈ 1− x+ x2 when x� 1 , (B.13)

1 + x

1− x ≈ 1 + 2x+ 2x2 when x� 1 , (B.14)

ex ≈ 1 + x+
1

2
x2 when x� 1 , (B.15)

e−jk∆ ≈ 1− jk∆− 1

2
(k∆)2 when k∆� 1 , (B.16)

ln(1 + x) = x− 1

2
x2 when x� 1 , (B.17)

log(1 + x) = (log e) ln(1 + x) = log e

(
x− 1

2
x2

)
when x� 1 , (B.18)√

z2 + ∆2 ≈ z +
1

2

∆2

z
when ∆2 � z2 , (B.19)
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10x = ex ln 10 ≈ (1 + x ln 10) when x� 1/ ln 10 = 0.43 , (B.20)

A = 10AdB
/10 = eAdB

(ln 10)/10 ≈ (1 +A
dB

ln 10/10) ≈ (1 + 0.23A
dB

) ,

when A
dB
� 4.3 ,

(B.21)∫
sin θdθ = cos θ + C , (B.22)∫
cos θdθ = − sin θ + C , (B.23)∫

eαx sin(βx+ γ)dx = eαx
1

α2 + β2
[α sin(βx+ γ)− β cos(βx+ γ)] . (B.24)

C Coordinate transformations

We often need to transform between rectangular and spherical coordinate systems. The
following relations between their unit vectors must then be used:

x̂ = sin θ cosϕr̂ + cos θ cosϕθ̂ − sinϕϕ̂ ,

ŷ = sin θ sinϕr̂ + cos θ sinϕθ̂ + cosϕϕ̂ ,

ẑ = cos θr̂− sin θθ̂ ,

(C.25)

r̂ = sin θ cosϕx̂ + sin θ sinϕŷ + cos θẑ ,

θ̂ = cos θ cosϕx̂ + cos θ sinϕŷ− sin θẑ ,

ϕ̂ = − sinϕx̂ + cosϕŷ .

(C.26)

The following cross-products are useful:

x̂× r̂ = − sinϕθ̂ − cos θ cosϕϕ̂ ,

ŷ× r̂ = cosϕθ̂ − cos θ sinϕϕ̂ ,

ẑ× r̂ = sin θϕ̂ .

(C.27)

D Useful material parameters

See Table D.1, D.2 and D.3.

Table D.1: Values in free space [1].

Symbol Name Value in free space

η Free space impedance 376.7303 Ω ≈ 120πΩ

c Velocity of EM waves 2.99792458× 108 m/sec



E. BESSEL FUNCTIONS 402

Table D.2: Relative permittivity ε′r − jε′′r = ε′r[1− j tan δ] of some dielectric materials. ε′′r is called
the dielectric dissipation factor, δ the loss angle, and tan δ the loss tangent [2].

Frequency [GHz] 0.1 0.1 3. 3. 25. 25.

Material / Parameter εr ′ tan δ εr ′ tan δ εr ′ tan δ

Quarts glass (silicon dioxide) 3.78 .0002 3.78 .00006 3.78 .00025

Polystyrene 2.55 .0001 2.55 .00033 2.54 .0012

Polystyrene foam (0.25% filler) 1.03 - 1.03 .0001 1.03 -

Magnesium titanat (ceramics) 13.9 .0005 13.8 .0017 13.7 .0065

Teflon 2.1 .0002 2.1 .00015 2.08 .0006

Table D.3: Resistivity in Ωcm × 10−6 and skin depth of some conducting materials at room tem-
perature. The conductivity is one over the resistivity.

Skin depth
Material Resistivity 100 MHz 1 GHz 10 GHz

Aluminium 2.62 8 µm 2.6 µm 0.8 µm
Copper 1.7241 6.6 µm 2.1 µm 0.7 µm
Gold 2.44 7.9 µm 2.5 µm 0.8 µm
Iron 9.71 15.7 µm 5.0 µm 1.6 µm
Silver 1.62 6.4 µm 2.0 µm 0.6 µm
Steel (different kinds) 13-90 18-48 µm 5.7-15.2 µm 1.8-4.8 µm

E Bessel functions

The following integrals can be expressed in terms of the Bessel functions J0 , J1 and J2 of
first kind, and where the index denote the zeroth, first and second order:∫ 2π

0

eja cos(ϕ−ϕ
0
)dϕ = 2πJ0(a) ,∫ 2π

0

e−jϕeja cos(ϕ−ϕ
0
)dϕ = 2πje−jϕ0J

1
(a) ,∫ 2π

0

e−j2ϕeja cos(ϕ−ϕ
0
)dϕ = −2πe−j2ϕ0J

2
(a) .

F Equivalent circuits of two-port circuits

A general two-port circuit is shown in Fig. F.1. The circuit itself is of no interest to us, the
only thing that is interesting is how the circuit responds to external sources and loads. Thus,
the two-port is viewed as a “black box” and we deal only with the voltages and currents at
the ports.

Generally we can write relations between the voltages and currents in matrix form as:[
X

1

X
2

]
=

[
A

11
A

12

A
21

A
22

] [
Y

1

Y
2

]
,
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Two−port

++

− −

I1 I2

V1 V2

Figure F.1: Port voltages and currents for a two-port circuit.

where X and Y represent any of the voltages or currents (V1 , V2 , I1 and I2).

The matrix elements can be determined by using the relation:

Aij =
Xi

Yj

∣∣∣∣
Yk 6=j,k=1,2=0

.

It can be shown that we can write down six different matrix relations for the two-port circuit
in Fig. F.1. Often only three of the six possible representations are used and consequently
we restrict ourselves to these three representations. The representations that we will use are
the impedance, admittance and the chain parameters. We will also consider another way to
describe two-ports which is not based on the total voltages and currents but rather on the
scattering of waves in the ports, i.e., the scattering parameters.

F.1 The impedance parameters for a two-port

The impedance parameters for a two-port are defined as:[
V

1

V
2

]
=

[
Z

11
Z

12

Z
21

Z
22

] [
I

1

I
2

]
, i.e., [V ] = [Z][I] .

From the matrix relation we obtain the equivalent circuit in Fig. F.2(a).

For a reciprocal two-port (most passive, linear circuits are reciprocal, but not if they contain
a magnetised material such as RF circulators) the Z-matrix is symmetrical, i.e., Z12 = Z21

(the transpose of the Z-matrix is equal to the matrix itself). Thus, for a reciprocal circuit it
is sufficient to describe the circuit with only three impedance elements, Fig. F.2(b).

It is convenient to use the Z-matrix representation when two two-port circuits are connected
in series, Fig. F.2(c).

For the series connection in Fig. F.2(c) the resulting Z-matrix is given by simple matrix
addition, i.e., [Z] = [ZA ] + [ZB ].

F.2 The admittance parameters for a two-port

The admittance parameters for a two-port are defined as:[
I

1

I
2

]
=

[
Y

11
Y

12

Y
21

Y
22

] [
V

1

V
2

]
, i.e., [I] = [Y ][V ] .
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−−

++

V1

I1

Z11

Z12I2

Z22

I2

± ± Z21I1

V2

(a)

−

+ +

−

V1 Z12 V2

Z11 − Z12 Z22 − Z12I1 I2

(b)

−

−−

++

−

++

− −

++

V1B

V1A V2A

I1B I2B

I2AI1AI1

V2B[ZB]

[ZA]

V1 V2

I2

(c)

Figure F.2: (a) Equivalent circuit for a two-port described by its Z-matrix. (b) Circuit representa-
tion for a reciprocal two-port, T-network. (c) Series connection of two two-ports.



405 CHAPTER . APPENDICES

− −

+ +

I1

V1

I2

V2Y22Y11

Y12V2 Y21V1

(a)

−

++

−

Y11 + Y12 Y22 + Y12 V2V1

−Y12I1 I2

(b)

−

+

−

+

+

−

−

+

−

+

−

+

V1B

V1A

I1B I2B

I2AI1A

V2A

V2B

V2

I2

V1

I1

[YB]

[YA]

(c)

Figure F.3: (a) Equivalent circuit for a two-port described by its Y -matrix. (b) Circuit representa-
tion for a reciprocal two-port, π-network. (c) Parallel connection of two two-ports.
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− −−−

+ +

−

+++

−

+

I2AI1AI1

V1AV1 [TA]

I1B I2B I2

V2B V2V2A [TB]V1B

Figure F.4: Cascade connection of two two-ports.

From the matrix relation we obtain the equivalent circuit in Fig. F.3(a).

For a reciprocal two-port the Y -matrix is symmetrical, i.e., Y12 = Y21 . Thus, for a recip-
rocal circuit it is sufficient to describe the circuit with only three admittance elements, see
Fig. F.3(b).

It is convenient to use the Y -matrix representation when two two-port circuits are connected
in parallel, see Fig. F.3(c). The resulting Y -matrix is given by simple matrix addition, i.e.,
[Y ] = [YA ] + [YB ].

F.3 The chain parameters for a two-port

The chain parameters for a two-port are defined as:[
V

1

I
1

]
=

[
A B
C D

] [
V

2

−I
2

]
, i.e., [X

1
] = [T ][X

2
] .

Note the minus sign for the current I2 .

There exists no equivalent circuit representation for the chain parameters.

For a reciprocal two-port the elements in the T-matrix fulfill the following relation: AD−BC =

1 (i.e., the determinant equals unity). For the special case of a reciprocal two-port the inverse
T-matrix will have a simple form and therefore we can express the output quantities in terms
of the input quantities in the following simple way:[

V
2

−I
2

]
=

[
D −B
−C A

] [
V

1

I
1

]
.

It is convenient to use the T-matrix representation when two two-ports are connected in
cascade, Fig. F.4.

For the cascade connection in Fig. F.4 the resulting T-matrix is given by simple matrix
multiplication, i.e., [T ] = [TA ][TB ].

F.4 The scattering parameters for a two-port

The scattering parameters are not defined in terms of the total voltages and currents shown
in Fig. F.1 and consequently not one of the six possible representations mentioned before.
The scattering parameters are defined in terms of transmitted and reflected waves at the
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Two−port V +
2

V −
2

V +
1

V −
1

Figure F.5: Transmitted and reflected waves used for the definition of the scattering parameters.

ports, Fig. F.5. The scattering parameters are included here since when measuring the char-
acteristics of a two-port (or N -port), a network analyzer is often used and the analyzer is
designed for measuring the scattering parameters.

The scattering parameters for a two-port are defined as:[
V −

1

V −
2

]
=

[
S

11
S

12

S
21

S
22

] [
V +

1

V +
2

]
, i.e., [V −] = [S][V +] .

The total voltage at a port is equal to the sum of the amplitudes of the transmitted and
reflected waves, and similarly for the currents, thus:{

Vi = V +
i + V −i

Ii = I+
i − I−i

,

where, for a two-port, i = 1 . . . 2 and the minus sign for the current is due to the reference
directions. If we assume the impedance in the measuring system connected to the two-port
is the same on both sides of the two-port and equal to Z0 , the following relations between
current amplitudes and voltage amplitudes are obtained:I

+
i =

V +
i

Z
0

I−i =
V −i
Z

0

→ Ii =
1

Z0

(V +
i − V −i ) .

Normally the impedance Z0 is equal to 50 Ω.

Using the above expressions we can now obtain the following relations between the scattering
parameters and the impedance parameters:

[S] = ([Z] + Z
0
[U ])

−1
([Z]− Z

0
[U ]) ,

[Z] = Z
0
([U ] + [S])([U ]− [S])−1 ,

where [U ] is the identity matrix and (. . . )−1 means matrix inversion.

F.5 Extension to N-ports

When dealing with N -ports we are here only interested in N -ports with an equal number
of input and output ports, i.e., N -ports with an even number of ports. Thus, we consider
N -ports with 2M ports, where M is an integer number.

In order to distinguish between the input and output ports we start the numbering with the
input ports, i.e., the input ports will have numbers ranging from 1 to M and the output
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IM+2
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V2M

2M -port

......

Figure F.6: N -port with 2M ports.

ports numbers from M + 1 to 2M . It should be noted that the ports are often connected
unsymmetrically, e.g., the lower nodes of the ports are connected to a common point (the
ground point).

As for the special case of a two-port we can write down the relations between the port voltages
and currents in matrix form, the only difference is that the dimension of the matrix will now
be N by N .


X

1

X
2

. . .
X
N

 =


A

11
A

12
. . . A

1N

A
21

A
22

. . . A
2N

. . . . . . . . . . . .
A
N1

A
N2

. . . A
NN



Y

1

Y
2

. . .
Y
N

 ,

where X and Y represent any of the port voltages or currents.

The matrix elements can be determined by using the relation:

Aij =
Xi

Yj

∣∣∣∣
Yk 6=j,k=1,...N=0

.

As is clear from the matrix relation above we have many different possibilities to represent an
N -port. However, as for the special case of two-ports we also for this case restrict the number
of representations to three, the impedance, admittance and the chain parameters.
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F.6 The impedance parameters for an N-port

The impedance parameters for an N -port with 2M ports are defined as:


V

1

V
2

. . .
V

2M

 =


Z

11
Z

12
. . . Z

12M

Z
21

Z
22

. . . Z
22M

. . . . . . . . . . . .
Z

2M1
Z

2M2
. . . Z

2M2M



I

1

I
2

. . .
I

2M

 ,

i.e.,

[
[V

1
]

[V
2
]

]
=

[
[Z

11
] [Z

12
]

[Z
21

] [Z
22

]

] [
[I

1
]

[I
2
]

]
,

where [V
1
] =

[
V

1
V

2
. . . V

M

]T
, [I

1
] =

[
I

1
I

2
. . . I

M

]T
,

[V
2
] =

[
V
M+1

V
M+2

. . . V
2M

]T
, [I

2
] =

[
I
M+1

I
M+2

. . . I
2M

]T
,

for a reciprocal N -port the Z-matrix is symmetrical, i.e., Zij = Zji.

The impedance parameters are convenient to use when two N -ports are connected in series.
For the series connection the resulting Z-matrix is given by matrix addition, i.e., [Z] =

[ZA ] + [ZB ].

F.7 The admittance parameters for an N-port

The admittance parameters for an N -port with 2M ports are defined as:


I

1

I
2

. . .
I

2M

 =


Y

11
Y

12
. . . Y

12M

Y
21

Y
22

. . . Y
22M

. . . . . . . . . . . .
Y

2M1
Y

2M2
. . . Y

2M2M



V

1

V
2

. . .
V

2M

 ,

i.e.,

[
[I

1
]

[I
2
]

]
=

[
[Y

11
] [Y

12
]

[Y
21

] [Y
22

]

] [
[V

1
]

[V
2
]

]
,

where [V1 ] =
[
V

1
V

2
. . . V

M

]T
, [I1 ] =

[
I

1
I

2
. . . I

M

]T
,

[V
2
] =

[
V
M+1

V
M+2

. . . V
2M

]T
, [I

2
] =

[
I
M+1

I
M+2

. . . I
2M

]T
.

For a reciprocal N -port the Y -matrix is symmetrical, i.e., Yij = Yji.

The admittance parameters are convenient to use when two N -ports are connected in parallel.
For the parallel connection the resulting Y -matrix is given by matrix addition, i.e., [Y ] =

[YA ] + [YB ].
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F.8 The chain parameters for an N-port

The chain parameters for an N -port with 2M ports are defined as:
V

1

V
2

. . .
IM−1

I
M

 =


T11 T12 . . . . . . T

12M

T21 T22 . . . . . . T
22M

. . . . . . . . . . . . . . .
T

2M1
T

2M2
. . . . . . T

2M2M



V
M+1

V
M+2

. . .
−I

2M−1

−I
2M

 ,

i.e.,

[
[V

1
]

[I
1
]

]
=

[
[A] [B]
[C] [D]

] [
[V

2
]

−[I
2
]

]
,

where [V
1
] =

[
V

1
V

2
. . . V

M

]T
, [I

1
] =

[
I

1
I

2
. . . I

M

]T
,

[V
2
] =

[
V
M+1

V
M+2

. . . V
2M

]T
, [I

2
] =

[
I
M+1

I
M+2

. . . I
2M

]T
.

The chain parameters are convenient to use when two N -ports are connected in cascade.
For the cascade connection the resulting T-matrix is given by matrix multiplication, i.e.,
[T ] = [TA ][TB ].

F.9 The scattering parameters for an N-port

The scattering parameters for an N -port with 2M ports are defined as:
V −

1

V −
2

. . .
V −

2M

 =


S

11
S

12
. . . S

12M

S
21

S
22

. . . S
22M

. . . . . . . . . . . .
S

2M1
S

2M2
. . . S

2M2M



V +

1

V +
2

. . .
V +

2M

 , i.e., [V −] = [S][V +] .

F.10 General relations between matrix representations

Relations between Z & Y

[Z] = [Y ]−1 ,

[Y ] = [Z]−1 .

In cases when matrix inversion is not possible the circuit cannot be represented in both
ways.

Relations between Z & T[
[Z

11
] [Z

12
]

[Z21 ] [Z22 ]

]
=

[
[A] · [C]−1 ([A] · [C]−1 · [D]− [B])

[C]−1 [C]−1 · [D]

]
,[

[A] [B]
[C] [D]

]
=

[
[Z

11
] · [Z

21
]−1 ([Z

11
] · [Z

21
]−1 · [Z

22
]− [Z

12
])

[Z
21

]−1 [Z
21

]−1 · [Z
22

]

]
.

An equal number of input and output ports are assumed.
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Relations between Y & T[
[Y

11
] [Y

12
]

[Y
21

] [Y
22

]

]
=

[
[D] · [B]−1 ([C]− [D] · [B]−1 · [A])
−[B]−1 [B]−1 · [A]

]
,[

[A] [B]
[C] [D]

]
=

[
−[Y21 ]−1 · [Y22 ] −[Y21 ]−1

−([Y11 ] · [Y21 ]−1 · [Y22 ]− [Y21 ]) −[Y11 ] · [Y21 ]−1

]
.

An equal number of input and output ports are assumed.

Relations between Z & S

[Z] = Z
0
([U ] + [S])([U ]− [S])−1 ,

[S] = ([Z] + Z0 [U ])
−1

([Z]− Z0 [U ]) ,

where [U ] is the identity matrix and Z0 is the impedance in the measuring system (usually
50 Ω).

Relations between Y & S

[Y ] =
1

Z
0

([U ]− [S])([U ] + [S])−1 ,

[S] = ([U ] + Z0 [Y ])−1([U ]− Z0 [Y ]) ,

where [U ] is the identity matrix and Z0 is the impedance in the measuring system (usually
50 Ω).
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Standards and Technology, USA.

[2] Reference Data for Radio Engineers, Howard W. Sams & Co. ITT, 1975.
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Index

active element pattern, 351
active impedance, 347, 350
additive white gaussian noise (AWGN), 108
admittance, 65
AFS, 107
ambient temperature, 61
angle of arrival (AoA), 76

distribution, 76
antenna gain, 56, 60
antenna impedance, 65
antenna noise, 60
AoA, 76
aperture blockage, 321
aperture diffraction, 8, 253, 255
aperture distribution (circular)

Gaussian, 248
hybrid mode with phase errors, 285
TE11 mode with phase errors, 281
uniform, 246

aperture distribution (rectangular)
cosine, 242
cosine with phase errors, 275
uniform, 241
uniform with phase error, 272

aperture efficiency, 58, 239, 241, 310
aperture illumination taper, 250, 307, 314
aperture integration, 302
array antennas, 3, 330

active, 3
adaptive, 4
array factor, 335
digital beam-forming, 4
embedded element approach, 383
full scan, 331
infinite array approach, 383
isolated element approach, 331, 383
limited scan, 331
resonant array, 331
signal processing, 4
travelling wave array, 331

array factor
element-by-element sum, 333, 353
Floquet mode sum, 337, 355
infinite grating-lobe sum, 337, 355

array simulator, 350
AUT, 40
average fading sensitivity (AFS), 107

average mode bandwidth, 103
AWGN, 108
axial ratio (AR), 27

backscatter, 7
baluns, 167
bandwidth, 62
basis functions, 158
beam efficiency, 45
beam ports, 71
beam-forming network, 331
beamwidth, 44
bitstream, 75
bitstreams, 94
blockage

center of aperture, 321
struts, 321

bodies of revolution (BOR), 6, 16, 21, 48, 267
BOR, 16
BOR0 antennas, 49, 140
BOR1 antennas, 49, 129, 141, 144, 172, 244, 281,

306
BOR1 relations, 49, 244
boresight, 42
boundary conditions, 125
brightness temperature, 61
broadside array, 338

Cassegrain antenna, 311
caustic, 5, 9
caustics, 15
CDF, 76
center blockage, 321
center blockage efficiency, 321
CFM, 87
channel estimation, 86, 88
channel state information (CSI), 87, 95, 111
coherence bandwidth, 109
complex source point (CSP), 258, 260
conductivity, 125
conjugate field matching (CFM), 87
conjugate matched load, 175
conjugate matching, 68, 175
continuity equation, 124
contour plots, 40
contoured-beam antennas, 4, 296
correlation coefficient, 85
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corrugated conical horn, 266, 284
aperture-controlled, 289
flareangle-controlled, 288
maximum gain horn, 289

corrugated pyramidal horn, 266, 280
corrugated surface, 277

PEC/PMC strip model, 279
cosecant-squared antennas, 4
cosine power n pattern, 50, 314
cross product, 13
CSI, 87, 95, 111
CSP, 258, 260
current density, 10
cylindrical reflector, 326
cylindrical waves, 265

dB, 10
dBi, 42, 43
dBiid, 115
dBR, 92
decorrelation efficiency, 93
decoupling efficiency, 380, 382
diagonalizing the channel matrix, 112
diffraction, 8
diffraction cone, 8
dipole

as BOR0 antenna, 172
as BOR1 antenna, 172

directive gain, 42–44
directivity, 44, 310

maximum available, 57, 360, 375
directivity longitudinal ϕ0 -plane, 344
directivity main lobe cone, 344
diversity gain, 91, 93

actual, 92
apparent, 92
effective, 92

diversity in LOS, 116
dot-product, 12
duality between impedances and admittances, 134
duality theorem, 134
dyads, 13

E-plane pattern, 45, 49
edge diffraction, 324
edge diffraction efficiency, 324
effective aperture, 57
effective area

maximum, 175
efficiency

aperture center blockage, 321
decoupling, 380, 382
edge diffraction and blockage, 324
embedded element, 84, 352, 380, 381
embedded radiation, 81
feed, 310, 312
grating, 344, 360
illumination, 313, 360
phase, 255, 313, 318
polarization, 28, 44, 57, 360
polarization sidelobe, 312

radiation, 57, 62
spillover, 310, 312
total radiation, 56, 62, 79, 103

electric field, 10
electromagnetic compatibility (EMC), 99, 193
electromagnetic force, 179
element ports, 71, 381
elliptical polarization, 27
embedded element, 81

efficiency, 84, 352, 380, 381
pattern, 351, 363

embedded element approach, 81, 383
EMC, 99
endfire array, 338
environment, 63
equivalence theorem, 5
equivalent

free space, 138
Huygens, 138, 229, 235
PEC, 137, 232, 264
physical, 138

equivalent circuit, 65, 66
electric and magnetic current distribution, 153
electric current distribution, 151
magnetic current distribution, 152
Norton, 65, 66
reception, 66
Thevenin, 65
transmission, 65

equivalent focal length, 312

fading, 4
complex Gaussian, 76
Rayleigh, 76

far-field, 33
far-field condition, 34
far-field function, 35, 171, 194, 237

factorization of, 171, 237, 238
free space aperture, 238
PEC aperture, 237

far-field region, 133
FDTD, 6, 264
feed efficiency, 310, 312
feed illumination taper, 307, 314
FEM, 6, 264
focal point, 304
formula, 59
forward scattering, 7
Fourier transform, 171

aperture, 237
dipole, 171
slot, 195

Fraunhofer approximation, 37, 133
Fraunhofer condition, 34
free space attenuation, 59
free space equivalent, 138, 234
frequency, 22
frequency scaling, 135
frequency selective surfaces (FSS), 224
Friis transmission equation, 59
FSS, 224
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G/T, 60, 64
gain

antenna, 56
directive, 43
directivity, 44
realized, 56

Galerkin’s method, 159, 198, 219, 221
Gaussian beam, 229, 250, 258, 287

8.7 dB radius, 252
beam waist, 258
curved phase-front, 255
diffraction cone, 253
GO cone, 253
phase center, 253, 254
phase efficiency, 255
phase slippage, 253
plane phase-front, 255
to model corrugated conical horn, 287
wavefront curvature, 252

geometrical optics (GO), 5, 8, 299, 325
GO, 325
gradual radiation cut-off, 391
grating efficiency, 344
grating-lobes

grating efficiency, 344, 360
in complementary diagonal plane, 358
requirement for non-radiating, 341, 358

Green’s function, 6, 139, 144, 156, 218, 219
definition of , 123

ground noise, 61
guide wavelength, 205

H-plane pattern, 45, 49
half-wave dipole, 168, 177
Hannan’s asymptote, 381
hard surface, 128, 129
harmonic 1D field problem, 218
hat feed, 326
helical antenna, 190
Hertz dipole, 139
Hill’s power transfer formula, 103
Hill’s transmission equation, 103
horizontal (HOR) polarization, 24
horn antennas, 3, 234, 263
Huygens equivalent, 138, 229, 235
Huygens source, 144, 145, 374, 377
hybrid mode, 285

i.i.d., 78, 110
ideal reference antenna, 91, 115
ideal-antenna noise temperature, 61
illumination efficiency, 313, 360
imaging, 150, 194
impedance

boundary condition, 279
transformation along line, 68

incremental
electric current, 139, 144
magnetic current, 141, 145

incremental source constant, 132, 134

independent and identically distributed (i.i.d.), 78,
110

infinite array approach, 383
input impedance, 65
integral equation, 156
isolated element approach, 81, 383
isotropic environment, 77

leaky wave antennas, 331
left-hand circular (LHC) polarization, 27
line-fed, 204
line-of-sight (LOS), 75
linear arrays

broadside array, 338
endfire array, 338, 345
grating efficiency, 344
grating-lobes, 356
main lobe, 338
mutual impedance, 348
scan blindness, 351
scan impedance, 347, 350

linear polarization, 24
loop antenna, 189

resonant, 192
LOS, 75
low noise amplifier (LNA), 62

magnetic current density, 10, 194
magnetic current source, 145
magnetic field, 10
maximal ratio combining (MRC), 86, 87, 116
maximum available directivity, 239, 374
Maxwell’s equations, 123
method of moments (MoM), xv, 6, 123, 136, 156, 179,

191, 197, 198, 211, 219, 232, 267
microstrip antennas, 3, 204

aperture-coupled, 204
characteristic impedance, 205
circular polarization, 205
effective permittivity, 205
effective width, 205
impedance line-fed, 215
impedance probe-fed, 216
probe-fed, 204
transmission line model, 205
two-slot model, 208

MIMO, 4, 75
MIMO multiplexing, 111
mismatch factor, 57
mixed potential integral equation (MPIE), 222
mode matching, 266
mode stirring, 100
MoM, xv, 6, 123, 136, 156, 179, 191, 197, 198, 211,

219, 232, 267
monopole, 168

as BOR0 antenna, 171
MPIE, 222
MRC, 86, 87, 116
multi-beam antennas, 4, 296
multi-port, 4
multipath, 75
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multipath environment, 75
multiple reflections, 322
mutual admittance, 150
mutual coupling coefficient, 150
mutual impedance, 148, 150, 159

near-field functions, 133
noise figure, 62
noise temperature, 59, 64

OFDM, 109, 112
omnidirectional antennas, 4
on axis, 42, 44
open-circuit element pattern, 363
orthogonal frequency division multiplexing (OFDM),

109

parabolic cylinders, 326
paraboloidal reflector, 304
paraxial approximation, 250, 269, 273, 276, 282
PEC equivalent, 137, 232, 264
pencil-beam antennas, 4
penetration depth, 125
perfect electric conductor (PEC), 125, 126, 150
perfect magnetic conductor (PMC), 126, 150
permeability, 124
permittivity, 124
phase center, 42, 47, 55, 254, 288, 317

near-field, 253
phase efficiency, 255, 313, 318
phase paths, 9
phase reference point, 37, 42, 46
phase velocity in free space, 23, 132
phase-fronts, 9
physical equivalent, 138
physical optics (PO), 139, 301
planar arrays, 352

array factor, 355
grating-lobes, 356
main lobe, 338
rectangular grid, 352
triangular grid, 352

PO approximation, 139, 301
PO integration, 301, 302, 326
PoD, 108
pointing direction, 44, 57
polarization, 23, 24

circular, 26, 27, 39
co-polar, 23
cross-polar, 23, 28
cross-polar sidelobe, 44
efficiency, 28, 44, 56, 57, 360
horizontal (HOR), 24, 40
Ludwig’s third definition, 39, 49, 144
relative cross-polar level, 44
relative level, 28
sidelobe efficiency, 312
unit vectors, 39
vertical (VER), 24, 40

polarization diversity in LOS, 116
polarization imbalance, 76

polarizer for generating circular polarization, 31
port impedance, 65
power, 22
power allocation

inverse, 113, 114
water-filling, 114, 115

power distribution network, 331
power gain, 56
power integral

aperture, 238
BOR1 antennas, 50
definition, 43, 45
linear array, 343
planar array, 358
rectangular aperture, 241
reflector antenna, 308

power, total radiated, 43, 238
Poynting vector, 22
probability of detection (PoD), 108
probe-fed patch, 211

Q-factor, 385
minimum radiation Q, 387

quality factor, 104

radar equation, 59
radiating near-field region, 34
radiation admittance, 197

slot, 197
radiation cut-off, 391
radiation efficiency, 57, 62
radiation field function, see far-field function
radiation impedance, 65, 178

dipole, 178
radiation integrals, 134
radiation intensity, 36
radiation pattern, 40
radiation resistance, 185, 196

half-wave dipole, 177
short dipole over ground, 185
slot, 196

radome, 63
Rayleigh fading, 76, 102
reaction, 146, 159
reaction integrals, 146
reactive near-field region, 34
receiver noise, 60
reciprocity, 35

relations, 146, 176
theorem, 146

rectangular plots, 40
reflection, 8
reflection coefficient, 57, 65, 69

transformation along line, 68
reflector antennas, 3, 233, 296, 311

axial displacements of feed, 318
Cassegrain, 311
equivalent focal length, 312
paraboloidal reflector, 304

reflector synthesis, 325
refraction, 8
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relative permeability, 125
relative permittivity, 125
replacement relations between electric and magnetic

currents, 135
return loss, 66
reverberation chamber, 75, 99
Rice fading, 102
rich isotropic multipath (RIMP), 77
right-hand circular (RHC) polarization, 26
right-hand rule, 13
RIMP, 77
root-mean-square (RMS), 62, 319
rotationally symmetric antennas (Bodies of Revolu-

tion, BOR), 48

SC, 86, 89
scalar product, 12
scan blindness, 351
scan element pattern, 351
scan impedance, 347
scattering, 7
selection combining (SC), 86, 89
self-impedance, 149, 159
shaped reflectors, 325
shielding, 193
short wire antenna, 167
signal-to-noise ratio, 59, 75
simplification relations, 130
singular value decomposition (SVD), 95, 113
skin depth, 125
slot antennas, 3, 193, 200

longitudinal slots, 200
transverse slots, 200

small antennas
cascaded-resonance-type, 392
gradual-transition-type, 390
single-resonance-type, 388

SNR, 75
soft and hard boundary conditions, 128
soft surface, 128, 129, 279, 280, 285
Sommerfeld integral, 222, 260
source point singularity, 159, 180
spectral domain method, 6, 217
spherical waves, 265
spillover efficiency, 310, 312
standard gain horn, 42

directivity of, 277
strut blockage, 321
superdirectivity, 379
superposition, 135
surface normal, 297
surface waves, 280
SVD, 95, 113
symmetric product, 12
system noise temperature, 60

taper
aperture illumination, 250, 307, 314
feed illumination, 307, 314
general, 44

Thevenin equivalent, 66

thin wire approximation, 160, 169, 170, 178
threshold receiver, 107
time delay spread, 109
TIS, 107
tolerances, 62
total embedded radiation efficiency, 84
total isotropic sensitivity (TIS), 107
total radiation efficiency, 56, 62, 79, 103
transmission equations

Friis in free space, 59
Hill’s in reverberation chamber, 103

transmission formula in multipath, 79

uniqueness theorem, 136
universal radiation pattern, 40, 246, 272, 275, 284,

285
BOR1 antenna, uniform illumination, 246
circular aperture, 247
conical horn, 284
corrugated conical horn, 285
linear array, uniform excitation, 336
rectangular aperture, 243
rectangular horn E-plane, 272
rectangular horn H-plane, 275
truncated Gaussian aperture, 251

UTD, 5, 8
uv-coordinates, 40, 238, 355, 356

vector integral forms of the E- and H-fields, 131
vector potential, 129

electric, 129
magnetic, 129

vertical (VER) polarization, 24
voltage, integral definition of, 148

wave impedance, 23, 132
wavelength, 23, 131
wavenumber, 23
wire antennas, 3

zero-forcing (ZF), 95, 112
ZF, 95, 112






	Preface
	General part
	Previous book versions
	About the citations
	Acknowledgments
	Some more characteristics of the textbook
	Learning outcome of Antenna Engineering course at Chalmers

	Introduction
	Antenna types and classes
	Brief history of antennas and analysis methods
	Terminology, quantities, units and symbols
	Radiation or scattering
	Reflection, refraction and diffraction
	Rays, waves, phase-fronts and phase paths
	SI units for fields and sources, and dB
	Symbols

	Vector notation and coordinate transformations
	Some vector formulas
	Coordinate transformations
	Dyads

	Overview on EM analysis methods by S. Maci
	References

	Characterization of directive antennas
	Time-harmonic electromagnetic fields
	Plane waves and their polarization
	Linear polarization
	Circular polarization
	Axial ratio and cross-polarization
	Example: Amplitude and phase errors in circular polarization excitations
	Polarizer for generating circular polarization
	Example: Mismatch in polarizer

	Radiation fields
	Field regions
	"Radiation fields" of receiving antennas
	Far-field function and radiation intensity
	Phase reference point and Fraunhofer approximation
	Polarization of radiation fields
	Co- and cross-polar radiation patterns
	Phase center
	Total radiated power
	Directive gain and directivity
	Beamwidth
	Cross-polarization
	Beam efficiency
	E- and H-plane patterns
	Fourier expansion of the radiation field
	Example: Phase reference point for asymmetric phase pattern
	Example: Calculation of phase center of a symmetric beam

	Rotationally symmetric antennas (BOR)
	BOR0 antennas with rotationally symmetric radiation fields
	BOR1 antennas
	Example: Directivity of BOR1 antenna with low sidelobes
	Example: Directivity of BOR1 antenna with high far-out sidelobes
	Example: BOR1 antenna with different E- and H-plane patterns
	Example: BOR1 antenna with different E- and H-plane phase patterns

	System characteristics of the antenna
	Antenna gain
	Aperture efficiency and effective area
	Friis transmission equation and the radar equation
	Antenna noise temperature and G/T
	Bandwidth
	Tolerances
	Environmental effects
	Example: Noise temperature and G/T

	Equivalent circuits of single-port antennas
	Transmitting antennas
	Impedance matching to transmission line
	Receiving antenna
	Conjugate impedance matching
	Impedance and reflection coefficient transformations

	Periodic reflection coefficients r(f)
	Equivalent circuits of multi-port array antennas
	Further reading
	Complementary comments by S. Maci
	Exercises
	References

	Characterization in multipath
	Multipath without Line-of-Sight (LOS)
	Rayleigh fading and CDF
	Angle of Arrival (AoA), XPD and polarization imbalance
	Rich Isotropic Multipath (RIMP)

	Characterization of single-port antennas in RIMP
	Antenna impedance, port impedance and reflection coefficient
	Mean Effective Gain (MEG) and Directivity (MED)
	Total radiation efficiency and transmission formula

	Characterization of multi-port antennas in RIMP
	Definition of channel
	Embedded elements
	Embedded radiation efficiency and decoupling efficiency
	Correlation between ports

	Characterization of diversity performance
	Channel estimation and digital MRC processing
	Example: MRC applied to 2D slot antenna case
	Diversity gains (apparent, effective and actual)
	Theoretical determination of diversity gain

	Maximum available capacity from Shannon
	Single-port system
	Parallel channels in LOS
	Parallel channels in multipath
	Normalization
	Numerical simulation of channels in multipath

	Emulation of RIMP using reverberation chamber
	Mode stirring (mechanical, platform, polarization)
	The S-parameters of the chamber and of the antennas
	Rayleigh fading, Rician fading and AoA distribution
	Average transmission level (Hill’s formula) and calibration
	Frequency stirring on net transfer function
	Number of independent samples & accuracy

	Measurements in reverberation chamber
	Calibration and characterizing multi-port antennas
	Radiated power, receiver sensitivity and data throughput

	System modeling using digital threshold receiver
	The digital threshold receiver
	Modeling OFDM in LTE 4G system
	Theoretical and measured results for i.i.d. diversity case

	MIMO multiplexing to obtain multiple bitstreams
	Diagonalizing the channel matrix
	Measurements of two bitstreams in reverberation chamber
	Quality of throughput in terms of MIMO efficiency

	Example: Polarization diversity and multiplexing in LOS
	Single bitstream
	Two bitstreams

	Antennas for use on handsets
	Exercises
	References

	The theory of radiation from current sources
	Maxwell’s equations
	Differential form
	Standard boundary conditions
	Impressed current sources on PECs
	Soft and hard boundary conditions
	Auxiliary vector potentials

	Vector integral forms of the E- and H-fields
	General expressions
	Radiating far-field expressions
	Duality
	Superposition
	Replacement between electric and magnetic currents
	Frequency scaling

	Construction of solutions: uniqueness and equivalence
	PEC equivalent and magnetic currents
	Free space and Huygens equivalents
	Physical equivalent

	Incremental current sources
	Incremental electric current (or Hertz dipole)
	Incremental magnetic current 
	Huygens source
	Summary
	Example: Directivities of incremental sources

	Reaction, reciprocity and mutual coupling
	Reaction integrals
	Three reciprocity relations
	Reciprocity between input/output ports of antennas
	Mutual impedance, mutual admittance and coupling coefficient

	Imaging
	Integral equations and Method of Moments
	Simple algorithm for near-field from line current
	Simple algorithm for near-field from surface current

	Complementary comments by S. Maci
	Exercises to Chapter 4
	References

	Small wire and slot antennas
	Electric monopole and dipole
	Approximate current distribution of monopole
	Approximate current distribution of dipole
	Far-field function of dipole
	Directivity and radiation resistance of short dipole
	Equivalent circuit and maximum effective aperture of short dipole
	Directivity and radiation resistance of half-wave dipole
	Self-impedance of electric dipole
	Impedance of cylindrical and flat electric dipoles
	Dipole at arbitrary location
	Arbitrary dipole above ground
	Vertical dipole above ground
	Vertical monopole
	Horizontal dipole above ground

	Electric loop antenna as vertical magnetic dipole
	Helical antennas
	Slot antennas
	Field distribution and radiation pattern
	Slot admittance when excited by voltage source
	Slot excited by plane wave
	Reflection coefficient of open waveguide
	Slots in waveguide walls

	Further reading
	Complementary comments by S. Maci
	Exercises to Chapter 5
	References

	Microstrip antennas and spectral domain methods
	Transmission line model for rectangular patch
	Radiation pattern by two-slot model
	Impedance by transmission line model

	Self-reaction model for patch impedance
	Expansion of current distribution and Method of Moments
	Impedance of line-fed patches
	Impedance of probe-fed patches

	Spectral domain methods
	3D field problem
	Harmonic 1D field problem
	Green’s function of harmonic 1D field problem
	Numerical implementation

	Further reading
	Complementary comments by S. Maci
	Exercises
	References

	Radiation from apertures
	Apertures in PECs
	PECs of arbitrary shape
	Infinite PEC planes

	Virtual apertures in free space
	Free space and Huygens equivalents
	Plane apertures

	Apertures in xy-plane
	PEC aperture and its incremental element factor
	Free space aperture and its incremental element factor
	Power integration over aperture and maximum directivity

	Rectangular plane aperture
	E- and H-plane patterns
	Directivity and aperture efficiency
	Uniform aperture distribution

	Circular aperture with BOR1 excitation
	Aperture field and far-field function
	Uniform aperture distribution
	Gaussian aperture distribution
	Tapered aperture distributions

	Gaussian beam
	Gaussian near-field
	Phase center of Gaussian beam
	Gaussian far-field
	Aperture diffraction by constant phase aperture
	GO radiation from aperture with strongly curved wavefront
	Alternative expressions for Gaussian beam parameters

	Complementary comments
	Exercises to Chapter 7
	References

	Horn antennas
	Calculation methods
	Cylindrical waveguide plane aperture approach
	Radial cylindrical waveguide approach
	Conical and spherical sector waveguide approach
	Flared cylindrical waveguide approach
	Mode matching approach
	Method of Moments approach

	E-plane sector horn
	Flared cylindrical waveguide approach
	Paraxial approximation for plane aperture field
	Radiation patterns

	H-plane sector horn
	Flared cylindrical waveguide approach
	Paraxial approximation for plane aperture field
	Radiation patterns

	Pyramidal horn
	Corrugated surfaces
	Principle of operation in H-plane
	Principle of operation in E-plane
	Impedance boundary condition
	Corrugations as soft surface
	Bandwidth and surface waves

	Corrugated pyramidal horn
	Smooth conical horn
	Corrugated soft conical horn
	Modeling corrugated horn with Gaussian beams
	Choosing the Gaussian beam parameters
	Radiation field
	Flareangle-controlled horn
	Aperture-controlled horn
	Maximum gain horn
	Design curves
	Example: Design of dual band horn

	Other types of horn antennas
	Exercises to Chapter 8
	References

	Reflector antennas
	General reflector antenna theory
	General description of reflector and feed
	Incident field on reflector
	Reflected GO field
	PO integration
	Aperture integration
	Aperture integration by projection of the PO integral

	The paraboloidal reflector
	Surface normal, incident and reflected ray
	Aperture field
	Typical radiation pattern of paraboloidal reflector
	Directivity, feed efficiency and spillover

	The Cassegrain antenna
	Aperture field and efficiency

	Subefficiencies of paraboloids and Cassegrains
	Spillover, polarization, illumination and phase efficiencies
	Example: cosn(thetaf/2) feed
	Phase center
	Axial displacements of feed
	Surface tolerances
	Aperture blockage
	Edge diffraction efficiency
	Example: Corrugated feed horn for Cassegrain antenna

	Other reflector shapes
	Prime-focus feeds
	Exercises to Chapter 9
	References

	Array antennas
	Linear array of equispaced elements
	Array factor as an element-by-element sum
	Array factor for uniform amplitude and linear phase
	Array factor as a grating-lobe sum
	Steered main lobe
	Graphical representation of array factor
	Grating-lobes
	Sidelobes
	Directivity of long linear array
	Directivity of endfire array
	Example: Linear array of waveguide apertures

	Scan Impedance or Admittance
	Mutual impedance between two dipoles
	Scan impedance (active impedance)
	Scan blindness
	Active, scan and embedded element patterns

	Planar arrays of equispaced elements
	Array factor as an element-by-element sum
	Array factor as a grating-lobe sum
	Steered main lobe
	Grating-lobes
	Directivity
	Determination of the realized gain
	Example: Design of planar array

	Complementary comments by S. Maci
	Embedded element pattern and open-circuit element pattern
	MoM for infinite periodic array through periodic Green's function
	MoM for finite periodic array

	Practical array antennas
	Exercises
	References

	Fundamental limitations
	Background
	Maximum directivity of single-port antennas
	Large antennas
	Small antennas
	Heuristic combination valid for any antenna size
	Small antennas on large ground planes
	Planar array antennas
	Superdirectivity

	Embedded element efficiency of arrays
	Single-port antennas
	Multi-port antennas

	Gain limitations of regular antenna arrays
	Bandwidth limitations due to antenna size
	Intrinsic radiation Q for TE, TM and TE&TM
	Single-resonance-type small antennas
	Wideband gradual-transition-type small antennas
	Cascaded-resonances-type small antennas
	Summary

	Complementary comments by S. Maci
	References

	Appendices
	Derivation of vector integral forms
	Useful Series Expansions and Integrals
	Coordinate transformations
	Useful material parameters
	Bessel functions
	Equivalent circuits of two-port circuits
	The impedance parameters for a two-port
	The admittance parameters for a two-port
	The chain parameters for a two-port
	The scattering parameters for a two-port
	Extension to N-ports
	The impedance parameters for an N-port
	The admittance parameters for an N-port
	The chain parameters for an N-port
	The scattering parameters for an N-port
	General relations between matrix representations

	References

	About the Author
	Endorsements of the book:

	Index

